1.त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities):
त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th) के इस आर्टिकल में कुछ विशिष्ट सवालों को हल करेंगे जो त्रिकोणमितीय सर्वसमिकाओं पर आधारित हैं।आपको यह जानकारी रोचक व ज्ञानवर्धक लगे तो अपने मित्रों के साथ इस गणित के आर्टिकल को शेयर करें।यदि आप इस वेबसाइट पर पहली बार आए हैं तो वेबसाइट को फॉलो करें और ईमेल सब्सक्रिप्शन को भी फॉलो करें।जिससे नए आर्टिकल का नोटिफिकेशन आपको मिल सके।यदि आर्टिकल पसन्द आए तो अपने मित्रों के साथ शेयर और लाईक करें जिससे वे भी लाभ उठाए।आपकी कोई समस्या हो या कोई सुझाव देना चाहते हैं तो कमेंट करके बताएं।इस आर्टिकल को पूरा पढ़ें।
Also Read This Article:- Application of Quadratic Equation 10th
2.त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं के उदाहरण (Trigonometric Identities Class 10th Examples):
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए,जहाँ वे कोण,जिनके लिए व्यंजक परिभाषित है,न्यून कोण है: Example:1. 1 + sin θ cos θ + cos θ 1 + sin θ = 2 sec θ \frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}=2 \sec \theta c o s θ 1 + s i n θ + 1 + s i n θ c o s θ = 2 sec θ Solution: 1 + sin θ cos θ + cos θ 1 + sin θ = 2 sec θ L.H.S. 1 + sin θ cos θ + cos θ 1 + sin θ = ( 1 + sin θ ) 2 + cos 2 θ cos θ ( 1 + sin θ ) = 1 + 2 sin θ + sin 2 θ + cos 2 θ cos θ ( 1 + sin θ ) = 1 + 2 sin θ + 1 cos θ ( 1 + sin θ ) [ ∵ sin 2 θ + cos 2 θ = 1 ] = 2 ( 1 + sin θ ) cos θ ( 1 + sin θ ) = 2 cos θ = 2 sec θ = R.H.S. \frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}=2 \sec \theta \\ \text{L.H.S. } \frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta} \\ =\frac{(1+\sin \theta)^2+\cos ^2 \theta}{\cos \theta(1+\sin \theta)} \\ =\frac{1+2 \sin \theta+\sin ^2 \theta+\cos ^2 \theta}{\cos \theta(1+ \sin \theta)} \\ =\frac{1+2 \sin \theta+1}{\cos \theta(1+\sin \theta)}\left[\because \sin ^2 \theta+\cos ^2 \theta=1\right] \\ =\frac{2(1+\sin \theta)}{\cos \theta(1+\sin \theta)} \\ =\frac{2}{\cos \theta}=2 \sec \theta=\text { R.H.S. } c o s θ 1 + s i n θ + 1 + s i n θ c o s θ = 2 sec θ L.H.S. c o s θ 1 + s i n θ + 1 + s i n θ c o s θ = c o s θ ( 1 + s i n θ ) ( 1 + s i n θ ) 2 + c o s 2 θ = c o s θ ( 1 + s i n θ ) 1 + 2 s i n θ + s i n 2 θ + c o s 2 θ = c o s θ ( 1 + s i n θ ) 1 + 2 s i n θ + 1 [ ∵ sin 2 θ + cos 2 θ = 1 ] = c o s θ ( 1 + s i n θ ) 2 ( 1 + s i n θ ) = c o s θ 2 = 2 sec θ = R.H.S. Example:2. sin 4 θ − cos 4 θ sin 2 θ − cos 2 θ = 1 \frac{\sin ^4 \theta-\cos ^4 \theta}{\sin ^2 \theta-\cos ^2 \theta}=1 s i n 2 θ − c o s 2 θ s i n 4 θ − c o s 4 θ = 1 Solution: sin 4 θ − cos 4 θ sin 2 θ − cos 2 θ = 1 L.H.S. sin 4 θ − cos 4 θ sin 2 θ − cos 2 θ = ( sin 2 θ − cos 2 θ ) ( sin 2 θ + cos 2 θ ) sin 2 θ − cos 2 θ = sin 2 θ + cos 2 θ = 1 = R.H.S. \frac{\sin ^4 \theta-\cos ^4 \theta}{\sin ^2 \theta-\cos ^2 \theta}=1 \\ \text { L.H.S. } \frac{\sin ^4 \theta-\cos ^4 \theta}{\sin ^2 \theta-\cos ^2 \theta} \\ =\frac{\left(\sin ^2 \theta-\cos ^2 \theta\right)\left(\sin ^2 \theta+\cos ^2 \theta\right)}{\sin ^2 \theta-\cos ^2 \theta} \\ =\sin ^2 \theta+\cos ^2 \theta=1=\text { R.H.S. } s i n 2 θ − c o s 2 θ s i n 4 θ − c o s 4 θ = 1 L.H.S. s i n 2 θ − c o s 2 θ s i n 4 θ − c o s 4 θ = s i n 2 θ − c o s 2 θ ( s i n 2 θ − c o s 2 θ ) ( s i n 2 θ + c o s 2 θ ) = sin 2 θ + cos 2 θ = 1 = R.H.S. Example:3. 1 1 − sin θ + 1 1 + sin θ = 2 sec 2 θ \frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}=2 \sec^2 \theta 1 − s i n θ 1 + 1 + s i n θ 1 = 2 sec 2 θ Solution: 1 1 − sin θ + 1 1 + sin θ = 2 sec 2 θ L:H.S 1 1 − sin θ + 1 1 + sin θ θ = 1 + sin θ + 1 − sin θ ( 1 − sin θ ) ( 1 + sin θ ) = 2 1 − sin 2 θ = 2 cos 2 θ [ ∵ sin 2 θ + cos 2 θ = 1 ] = 2 sec 2 θ = R.H.S \frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}=2 \sec ^2 \theta \\ \text { L:H.S } \frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta} \\ \theta =\frac{1+\sin \theta+1-\sin \theta}{(1-\sin \theta)(1+\sin \theta)} \\ =\frac{2}{1-\sin ^2 \theta} \\ =\frac{2}{\cos ^2 \theta} \quad\left[\because \sin ^2 \theta+\cos ^2 \theta=1\right] \\ =2 \sec ^2 \theta=\text { R.H.S } 1 − s i n θ 1 + 1 + s i n θ 1 = 2 sec 2 θ L:H.S 1 − s i n θ 1 + 1 + s i n θ 1 θ = ( 1 − s i n θ ) ( 1 + s i n θ ) 1 + s i n θ + 1 − s i n θ = 1 − s i n 2 θ 2 = c o s 2 θ 2 [ ∵ sin 2 θ + cos 2 θ = 1 ] = 2 sec 2 θ = R.H.S Example:4.( sec θ − cos θ ) ( cot θ + tan θ ) = tan θ sec θ (\sec \theta-\cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta ( sec θ − cos θ ) ( cot θ + tan θ ) = tan θ sec θ Solution:( sec θ − cos θ ) ( cot θ + tan θ ) = tan θ sec θ L.H.S ( sec θ − cos θ ) ( cot θ + tan θ ) = ( 1 cos θ − cos θ ) ( cos θ sin θ + sin θ cos θ ) [ sec θ = 1 cos θ तथा tan θ = sin θ cos θ ] = ( 1 − cos 2 θ cos θ ) ( cos 2 θ + sin θ cos θ ) = sin 2 θ cos 2 θ × 1 sin θ cos θ = sin θ cos 2 θ = tan θ sec θ = R.H.S (\sec \theta-\cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta \\ \text { L.H.S }(\sec \theta-\cos \theta)(\cot \theta+\tan \theta) \\ =\left(\frac{1}{\cos \theta}-\cos \theta\right)\left(\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}\right)\left[ \sec \theta=\frac{1}{\cos \theta} \text{ तथा } \tan \theta =\frac{\sin \theta}{\cos \theta} \right]\\ =\left(\frac{1-\cos ^2 \theta}{\cos \theta}\right) \left(\frac{\cos ^2 \theta+\sin \theta}{\cos \theta}\right) \\ =\frac{\sin ^2 \theta}{\cos ^2 \theta} \times \frac{1}{\sin \theta \cos \theta} \\ =\frac{\sin \theta}{\cos ^2 \theta}=\tan \theta \sec \theta =\text { R.H.S } ( sec θ − cos θ ) ( cot θ + tan θ ) = tan θ sec θ L.H.S ( sec θ − cos θ ) ( cot θ + tan θ ) = ( c o s θ 1 − cos θ ) ( s i n θ c o s θ + c o s θ s i n θ ) [ sec θ = c o s θ 1 तथा tan θ = c o s θ s i n θ ] = ( c o s θ 1 − c o s 2 θ ) ( c o s θ c o s 2 θ + s i n θ ) = c o s 2 θ s i n 2 θ × s i n θ c o s θ 1 = c o s 2 θ s i n θ = tan θ sec θ = R.H.S Example:5. cot θ − tan θ = 1 − 2 sin 2 θ cos θ sin θ \cot \theta-\tan \theta=\frac{1-2 \sin ^2 \theta}{\cos \theta \sin \theta} cot θ − tan θ = c o s θ s i n θ 1 − 2 s i n 2 θ Solution: cot θ − tan θ = 1 − 2 sin 2 θ cos θ sin θ R.H.S. 1 − 2 sin 2 θ cos θ sin θ = 1 − sin 2 θ − sin 2 θ cos θ sin θ = cos 2 θ − sin 2 θ cos 2 θ ⋅ sin θ = cos 2 θ cos θ sin θ − sin 2 θ cos θ sin θ = cos θ sin θ − sin θ cos θ = cot θ − tan θ = L.H.S. \cot \theta-\tan \theta=\frac{1-2 \sin ^2 \theta}{\cos \theta \sin \theta} \\ \text{R.H.S. } \frac{1-2 \sin ^2 \theta}{\cos \theta \sin \theta} \\ =\frac{1-\sin ^2 \theta-\sin ^2 \theta}{\cos \theta \sin \theta} \\ =\frac{\cos ^2 \theta-\sin ^2 \theta}{\cos ^2 \theta \cdot \sin \theta} \\ =\frac{\cos ^2 \theta}{\cos \theta \sin \theta}-\frac{\sin ^2 \theta}{\cos \theta \sin \theta} \\ =\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta} \\=\cot \theta-\tan \theta=\text{L.H.S.} cot θ − tan θ = c o s θ s i n θ 1 − 2 s i n 2 θ R.H.S. c o s θ s i n θ 1 − 2 s i n 2 θ = c o s θ s i n θ 1 − s i n 2 θ − s i n 2 θ = c o s 2 θ ⋅ s i n θ c o s 2 θ − s i n 2 θ = c o s θ s i n θ c o s 2 θ − c o s θ s i n θ s i n 2 θ = s i n θ c o s θ − c o s θ s i n θ = cot θ − tan θ = L.H.S. Example:6. cosec 6 θ − cot 6 θ = 1 + 3 cosec 2 θ cot 2 θ \operatorname{cosec}^6 \theta-\cot ^6 \theta=1+3 \operatorname{cosec}^2 \theta \cot ^2 \theta cosec 6 θ − cot 6 θ = 1 + 3 cosec 2 θ cot 2 θ Solution: cosec 6 θ − cos 6 θ = 1 + 3 cosec 2 θ cot θ L.H.S. cosec 6 θ − cot 6 θ = ( cosec 2 θ ) 3 − ( cot 2 θ ) 3 = ( cosec 2 θ − cot 2 θ ) [ cosec 4 θ + cot 4 θ + cosec 2 θ cot 2 θ ] = ( 1 ) [ cosec 4 θ + cot 4 θ − 2 cosec 2 θ cot 2 θ + 3 cosec 2 θ cot 2 θ ] [ ∵ c o s e c 2 θ − cot 2 θ = 1 ] = [ ( cosec 2 θ − cot 2 θ ) 2 + 3 cosec 2 θ cot 2 θ ] = [ 1 2 + 3 cosec 2 θ cot 2 θ ] = 1 + 3 cosec 2 θ cot 2 θ = R.H.S. \operatorname{cosec}^6 \theta-\cos ^6 \theta=1+3 \operatorname{cosec}^2 \theta \cot \theta \\ \text { L.H.S. } \operatorname{cosec}^6 \theta-\cot ^6 \theta \\ =\left(\operatorname{cosec}^2 \theta\right)^3 -\left(\cot ^2 \theta\right)^3 \\ =\left(\operatorname{cosec}^2 \theta-\cot ^2 \theta\right) \left[\operatorname{cosec}^4 \theta+\cot ^4 \theta+ \operatorname{cosec}^2 \theta \cot ^2 \theta\right] \\ =(1)\left[\operatorname{cosec}^4 \theta+\cot ^4 \theta-2 \operatorname{cosec}^2 \theta \cot ^2 \theta+3 \operatorname{cosec}^2 \theta \cot ^2 \theta\right] \\ \left[\because cosec^2 \theta-\cot^2 \theta=1\right] \\ =\left[\left(\operatorname{cosec}^2 \theta-\cot^2 \theta\right)^2+3 \operatorname{cosec}^2 \theta \cot^2 \theta\right] \\=\left[1^2+3 \operatorname{cosec}^2 \theta \cot ^2 \theta\right] \\ =1+3 \operatorname{cosec}^2 \theta \cot ^2 \theta=\text { R.H.S. } cosec 6 θ − cos 6 θ = 1 + 3 cosec 2 θ cot θ L.H.S. cosec 6 θ − cot 6 θ = ( cosec 2 θ ) 3 − ( cot 2 θ ) 3 = ( cosec 2 θ − cot 2 θ ) [ cosec 4 θ + cot 4 θ + cosec 2 θ cot 2 θ ] = ( 1 ) [ cosec 4 θ + cot 4 θ − 2 cosec 2 θ cot 2 θ + 3 cosec 2 θ cot 2 θ ] [ ∵ cose c 2 θ − cot 2 θ = 1 ] = [ ( cosec 2 θ − cot 2 θ ) 2 + 3 cosec 2 θ cot 2 θ ] = [ 1 2 + 3 cosec 2 θ cot 2 θ ] = 1 + 3 cosec 2 θ cot 2 θ = R.H.S. विकल्पतः R.H.S. 1 + 3 cosec 2 θ cot 2 θ = ( cosec 2 θ − cot 2 θ ) 2 + 3 cosec 2 θ cot 2 θ = cosec 4 θ + cot 4 θ − 2 cosec 2 θ cot 2 θ + 3 cosec 2 θ cot 2 θ = ( 1 ) ( cosec 4 θ + cot 4 θ + cosec 2 θ cot 2 θ ) = ( cosec 2 θ − cot 2 θ ) [ ( cosec 2 θ ) 2 + ( cot 2 θ ) 2 + cosec 2 θ cot 2 θ ] = ( cosec 2 θ ) 3 − ( cot 2 θ ) 3 = cosec 6 θ − cot 6 θ = L.H.S. \text { R.H.S. } 1+3\operatorname{cosec}^2 \theta \cot ^2 \theta \\ =\left(\operatorname{cosec}^2 \theta-\cot ^2 \theta\right)^2+3 \operatorname{cosec}^2 \theta \cot ^2 \theta \\ =\operatorname{cosec}^4 \theta+\cot ^4 \theta-2 \operatorname{cosec}^2 \theta \cot ^2 \theta +3 \operatorname{cosec}^2 \theta \cot ^2 \theta \\ =(1)\left(\operatorname{cosec}^4 \theta+\cot ^4 \theta+\operatorname{cosec}^2 \theta \cot ^2 \theta\right) \\ =\left(\operatorname{cosec}^2 \theta-\cot ^2 \theta\right)\left[\left(\operatorname{cosec}^2 \theta\right)^2+\left(\cot ^2 \theta\right)^2+\operatorname{cosec}^2 \theta \cot ^2 \theta\right] \\ =\left(\operatorname{cosec}^2 \theta\right)^3-\left(\cot ^2 \theta\right)^3 \\ =\operatorname{cosec}^6 \theta-\cot ^6 \theta=\text { L.H.S. } R.H.S. 1 + 3 cosec 2 θ cot 2 θ = ( cosec 2 θ − cot 2 θ ) 2 + 3 cosec 2 θ cot 2 θ = cosec 4 θ + cot 4 θ − 2 cosec 2 θ cot 2 θ + 3 cosec 2 θ cot 2 θ = ( 1 ) ( cosec 4 θ + cot 4 θ + cosec 2 θ cot 2 θ ) = ( cosec 2 θ − cot 2 θ ) [ ( cosec 2 θ ) 2 + ( cot 2 θ ) 2 + cosec 2 θ cot 2 θ ] = ( cosec 2 θ ) 3 − ( cot 2 θ ) 3 = cosec 6 θ − cot 6 θ = L.H.S. Example:7. sin θ ( 1 + tan θ ) + cos θ ( 1 + cot θ ) = cosec θ + sec θ \sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta) =\operatorname{cosec} \theta+\sec \theta sin θ ( 1 + tan θ ) + cos θ ( 1 + cot θ ) = cosec θ + sec θ Solution: sin θ ( 1 + tan θ ) + cos θ ( 1 + cot θ ) = cosec θ + 1 sec θ L.H.S. sin θ ( 1 + tan θ ) + cos θ ( 1 + cot θ ) = sin θ ( 1 + sin θ cos θ ) + cos θ ( 1 + cos θ sin θ ) [ cot θ = cos θ sin θ ] = sin θ ( cos θ + sin θ cos θ ) + cos θ ( sin θ + cos θ sin θ ) = ( cos θ + sin θ ) ( sin θ cos θ + cos θ sin θ ) = ( cos θ + sin θ ) ( sin 2 θ + cos 2 θ cos 2 θ sin θ ) = ( cos θ + sin θ ) × 1 cos θ sin θ = cos θ cos θ sin θ + sin θ cos θ sin θ = 1 sin θ + 1 cos θ = cosec θ + sec θ = R.H.S. \sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta)=\frac{\operatorname{cosec} \theta+1}{\sec \theta} \\ \text { L.H.S. } \sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta) \\ =\sin \theta \left(1+\frac{\sin \theta}{\cos \theta}\right)+\cos \theta\left(1+\frac{\cos \theta}{\sin \theta}\right)\left[ \cot \theta=\frac{\cos \theta}{\sin \theta} \right] \\ =\sin \theta\left(\frac{\cos \theta+\sin \theta}{\cos \theta}\right)+\cos \theta\left(\frac{\sin \theta+\cos \theta}{\sin \theta}\right) \\ =(\cos \theta+\sin \theta)\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right) \\ =(\cos \theta+\sin \theta)\left(\frac{\sin ^2 \theta+\cos ^2 \theta}{\cos ^2 \theta \sin \theta}\right) \\ =(\cos \theta+\sin \theta) \times \frac{1}{\cos \theta \sin \theta} \\ =\frac{\cos \theta}{\cos \theta \sin \theta}+ \frac{\sin \theta}{\cos \theta \sin \theta} \\ =\frac{1}{\sin \theta} +\frac{1}{\cos \theta}=\operatorname{cosec} \theta+\sec \theta=\text { R.H.S. } sin θ ( 1 + tan θ ) + cos θ ( 1 + cot θ ) = s e c θ cosec θ + 1 L.H.S. sin θ ( 1 + tan θ ) + cos θ ( 1 + cot θ ) = sin θ ( 1 + c o s θ s i n θ ) + cos θ ( 1 + s i n θ c o s θ ) [ cot θ = s i n θ c o s θ ] = sin θ ( c o s θ c o s θ + s i n θ ) + cos θ ( s i n θ s i n θ + c o s θ ) = ( cos θ + sin θ ) ( c o s θ s i n θ + s i n θ c o s θ ) = ( cos θ + sin θ ) ( c o s 2 θ s i n θ s i n 2 θ + c o s 2 θ ) = ( cos θ + sin θ ) × c o s θ s i n θ 1 = c o s θ s i n θ c o s θ + c o s θ s i n θ s i n θ = s i n θ 1 + c o s θ 1 = cosec θ + sec θ = R.H.S. विकल्पतः L.H.S. = cos θ + sin θ cos θ sin θ = cosec θ + sec θ = 1 sin θ + 1 cos θ = cos θ + sin θ sin θ cos θ L.H.S = R.H.S \text { L.H.S. }=\frac{\cos \theta+\sin \theta}{\cos \theta \sin \theta} \\ =\operatorname{cosec} \theta+\sec \theta \\ =\frac{1}{\sin \theta}+\frac{1}{\cos \theta} \\ =\frac{\cos \theta+\sin \theta}{\sin \theta \cos \theta} \\ \text { L.H.S}= \text{R.H.S } L.H.S. = c o s θ s i n θ c o s θ + s i n θ = cosec θ + sec θ = s i n θ 1 + c o s θ 1 = s i n θ c o s θ c o s θ + s i n θ L.H.S = R.H.S Example:8. sin 3 θ + cos 3 θ ( sin θ + cos θ ) = 1 − cos θ sin θ \frac{\sin ^3 \theta+\cos ^3 \theta}{(\sin \theta+\cos \theta)}=1-\cos \theta \sin \theta ( s i n θ + c o s θ ) s i n 3 θ + c o s 3 θ = 1 − cos θ sin θ Solution: sin 3 θ + cos 3 θ ( sin θ + cos θ ) = 1 − cos θ sin θ L.H.S. = sin 3 θ + cos 3 θ ( sin θ + cos θ ) = ( sin θ + cos θ ) ( sin 2 θ + cos 2 θ − cos θ sin θ ) ( sin θ + cos θ ) [ ∵ a 3 + b 3 = ( a + b ) ( a 2 + b 2 − a b ) ] = sin 2 θ + cos 2 θ − sin θ cos θ = 1 − sin θ cos θ = R.H.S. \frac{\sin ^3 \theta+\cos ^3 \theta}{(\sin \theta+\cos \theta)}=1-\cos \theta \sin \theta \\ \text{L.H.S. }=\frac{\sin ^3 \theta+\cos ^3 \theta}{(\sin \theta+\cos \theta)} \\ =\frac{(\sin \theta+\cos \theta)\left(\sin ^2 \theta+\cos ^2 \theta-\cos \theta \sin \theta\right)}{(\sin \theta+\cos \theta)} \left[ \because a^3+b^3=(a+b)(a^2+b^2-ab) \right]\\ =\sin ^2 \theta+\cos ^2 \theta-\sin \theta \cos \theta\\ =1-\sin \theta \cos \theta=\text { R.H.S. } ( s i n θ + c o s θ ) s i n 3 θ + c o s 3 θ = 1 − cos θ sin θ L.H.S. = ( s i n θ + c o s θ ) s i n 3 θ + c o s 3 θ = ( s i n θ + c o s θ ) ( s i n θ + c o s θ ) ( s i n 2 θ + c o s 2 θ − c o s θ s i n θ ) [ ∵ a 3 + b 3 = ( a + b ) ( a 2 + b 2 − ab ) ] = sin 2 θ + cos 2 θ − sin θ cos θ = 1 − sin θ cos θ = R.H.S. विकल्पतः 1 − cos θ sin θ sin 2 θ + cos 2 θ − cos θ sin θ = ( sin θ + cos θ ) ( sin 2 θ + cos 2 θ − cos θ sin θ ) ( sin θ + cos θ ) = sin 3 + cos 3 θ ( sin θ + cos θ ) = L.H.S. 1-\cos \theta \sin \theta\\ \sin ^2 \theta+\cos ^2 \theta-\cos \theta \sin \theta \\ =\frac{(\sin \theta+\cos \theta)\left(\sin ^2 \theta+\cos ^2 \theta-\cos \theta \sin \theta\right)}{(\sin \theta+\cos \theta)} \\ =\frac{\sin ^3+\cos ^3 \theta}{(\sin \theta+\cos \theta)}=\text { L.H.S. } 1 − cos θ sin θ sin 2 θ + cos 2 θ − cos θ sin θ = ( s i n θ + c o s θ ) ( s i n θ + c o s θ ) ( s i n 2 θ + c o s 2 θ − c o s θ s i n θ ) = ( s i n θ + c o s θ ) s i n 3 + c o s 3 θ = L.H.S. Example:9. cot θ 1 + tan θ = cot θ − 1 2 − sec 2 θ \frac{\cot \theta}{1+\tan \theta}=\frac{\cot \theta-1}{2-\sec ^2 \theta} 1 + t a n θ c o t θ = 2 − s e c 2 θ c o t θ − 1 Solution: cot θ 1 + tan θ = cot θ − 1 2 − sec 2 θ Method 1 L.H.S. cot θ 1 + tan θ \frac{\cot \theta}{1+\tan \theta}=\frac{\cot \theta-1}{2-\sec ^2 \theta} \\ \text{Method 1} \\ \text { L.H.S. } \frac{\cot \theta}{1+\tan \theta} 1 + t a n θ c o t θ = 2 − s e c 2 θ c o t θ − 1 Method 1 L.H.S. 1 + t a n θ c o t θ अंश व हर को 1 − tan θ 1-\tan \theta 1 − tan θ से गुणा करने पर:cot θ ( 1 − tan θ ) ( 1 + tan θ ) ( 1 − tan θ ) = cot θ − cot θ tan θ 1 − tan 2 θ = cot θ − 1 1 − ( sec 2 θ − 1 ) \frac{\cot \theta (1-\tan \theta)}{(1+\tan \theta)(1-\tan \theta)} \\ =\frac{\cot \theta-\cot \theta \tan \theta}{1-\tan ^2 \theta} \\ =\frac{\cot \theta-1}{1-(\sec ^2 \theta-1)} ( 1 + t a n θ ) ( 1 − t a n θ ) c o t θ ( 1 − t a n θ ) = 1 − t a n 2 θ c o t θ − c o t θ t a n θ = 1 − ( s e c 2 θ − 1 ) c o t θ − 1 [ ∵ cot θ tan θ = 1 \because \cot \theta \tan \theta=1 ∵ cot θ tan θ = 1 तथा 1 + tan 2 θ = sec 2 θ 1+ \tan^2 \theta= \sec^2 \theta 1 + tan 2 θ = sec 2 θ ] =cot θ − 1 1 − sec 2 θ + 1 = cot θ − 1 2 − sec 2 θ = R.H.S. Method 2 R.H.S. = cot θ − 1 2 − sec 2 θ = cot θ − cot θ tan θ 1 + 1 − sec 2 θ = cot θ ( 1 − tan θ ) 1 − ( sec 2 θ − 1 ) [ ∵ 1 = cot θ tan θ ] = cot θ ( 1 − tan θ ) 1 − tan 2 θ [ ∵ sec 2 θ − 1 = tan 2 θ ] = cot θ ( 1 − tan θ ) ( 1 + tan θ ) ( 1 − tan θ ) = cot θ 1 + tan θ = L.H.S. Method : 3 cot θ 1 + tan θ = cos θ sin θ 1 + sin θ cos θ = cos 2 θ sin θ ( sin θ + cos θ ) ⋯ ( 1 ) R.H.S. cot θ − 1 2 − cos 2 θ = cos θ sin θ − 1 2 − 1 cos 2 θ = ( cos θ − sin θ ) cos 2 θ sin θ ( 2 cos 2 θ − 1 ) = ( cos θ − sin θ ) cos 2 θ sin θ ( cos 2 θ + cos 2 θ − 1 ) = ( cos θ − sin θ ) cos 2 θ sin θ [ cos 2 θ − ( 1 − cos 2 θ ) ] = ( cos θ − sin θ ) cos 2 θ sin θ ( cos 2 θ − sin 2 θ ) = ( cos θ − sin θ ) cos 2 θ sin θ ( cos θ − sin θ ) ( cos θ + sin θ ) = cos 2 θ sin θ ( cos θ + sin θ ) ⋯ ( 2 ) \frac{\cot \theta-1}{1-\sec ^2 \theta+1}\\ =\frac{\cot \theta-1}{2-\sec ^2 \theta}=\text { R.H.S. } \\ \text { Method 2} \\ \text { R.H.S. } =\frac{\cot \theta-1}{2-\sec ^2 \theta} \\ =\frac{\cot \theta-\cot \theta \tan \theta }{1+1-\sec ^2 \theta} \\ =\frac{\cot \theta\left(1-\tan \theta\right)}{1-\left(\sec ^2 \theta-1\right)} \left[ \because 1=\cot \theta \tan \theta \right] \\ =\frac{\cot \theta(1-\tan \theta)}{1-\tan^2 \theta} \left[\because \sec ^2 \theta-1=\tan ^2 \theta \right] \\ =\frac{\cot \theta(1-\tan \theta)}{(1+\tan \theta)(1-\tan \theta)} \\ =\frac{\cot \theta}{1+\tan \theta}=\text { L.H.S. } \\ \text { Method : 3 } \frac{ \cot \theta}{1+\tan \theta} \\ =\frac{\frac{\cos \theta}{\sin \theta}}{1+\frac{\sin \theta}{\cos \theta}} \\ =\frac{\cos ^2 \theta}{\sin \theta( \sin \theta+\cos \theta)} \cdots(1) \\ \text{R.H.S. } \frac{\cot \theta-1}{2-\cos^2 \theta} \\ =\frac{\frac{\cos \theta}{\sin \theta}-1}{2-\frac{1}{\cos ^2 \theta}} \\ =\frac{(\cos \theta-\sin \theta) \cos ^2 \theta}{\sin \theta\left(2 \cos ^2 \theta-1\right)} \\ =\frac{(\cos \theta-\sin \theta) \cos ^2 \theta}{\sin \theta\left(\cos ^2 \theta+\cos ^2 \theta-1\right)} \\ =\frac{(\cos \theta-\sin \theta) \cos ^2 \theta}{\sin \theta\left[\cos ^2 \theta-\left(1-\cos ^2 \theta\right)\right]} \\ =\frac{(\cos \theta-\sin \theta) \cos ^2 \theta}{\sin \theta\left(\cos ^2 \theta-\sin ^2 \theta\right)} \\ =\frac{(\cos \theta-\sin \theta) \cos ^2 \theta}{\sin \theta(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)} \\ =\frac{\cos ^2 \theta}{\sin \theta(\cos \theta+\sin \theta)} \cdots(2) 1 − s e c 2 θ + 1 c o t θ − 1 = 2 − s e c 2 θ c o t θ − 1 = R.H.S. Method 2 R.H.S. = 2 − s e c 2 θ c o t θ − 1 = 1 + 1 − s e c 2 θ c o t θ − c o t θ t a n θ = 1 − ( s e c 2 θ − 1 ) c o t θ ( 1 − t a n θ ) [ ∵ 1 = cot θ tan θ ] = 1 − t a n 2 θ c o t θ ( 1 − t a n θ ) [ ∵ sec 2 θ − 1 = tan 2 θ ] = ( 1 + t a n θ ) ( 1 − t a n θ ) c o t θ ( 1 − t a n θ ) = 1 + t a n θ c o t θ = L.H.S. Method : 3 1 + t a n θ c o t θ = 1 + c o s θ s i n θ s i n θ c o s θ = s i n θ ( s i n θ + c o s θ ) c o s 2 θ ⋯ ( 1 ) R.H.S. 2 − c o s 2 θ c o t θ − 1 = 2 − c o s 2 θ 1 s i n θ c o s θ − 1 = s i n θ ( 2 c o s 2 θ − 1 ) ( c o s θ − s i n θ ) c o s 2 θ = s i n θ ( c o s 2 θ + c o s 2 θ − 1 ) ( c o s θ − s i n θ ) c o s 2 θ = s i n θ [ c o s 2 θ − ( 1 − c o s 2 θ ) ] ( c o s θ − s i n θ ) c o s 2 θ = s i n θ ( c o s 2 θ − s i n 2 θ ) ( c o s θ − s i n θ ) c o s 2 θ = s i n θ ( c o s θ − s i n θ ) ( c o s θ + s i n θ ) ( c o s θ − s i n θ ) c o s 2 θ = s i n θ ( c o s θ + s i n θ ) c o s 2 θ ⋯ ( 2 ) (1) व (2) सेः L.H.S.=R.H.S. Example:10. 1 + cos θ 1 − cos θ = 1 + cos θ sin θ = cosec θ + cot θ \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{1+\cos \theta}{\sin \theta}=\operatorname{cosec} \theta+\cot \theta 1 − c o s θ 1 + c o s θ = s i n θ 1 + c o s θ = cosec θ + cot θ Solution: 1 + cos θ 1 − cos θ = 1 + cos θ sin θ = cosec θ + cot θ L.H.S. 1 + cos θ 1 − cos θ = 1 + cos θ 1 − cos θ × 1 + cos θ 1 + cos θ = ( 1 + cos θ ) 2 1 − cos 2 θ = 1 + cos θ sin 2 θ = 1 + cos θ sin θ = M.H.S. = 1 sin θ + cos θ sin θ = cosec θ + cot θ = R.H.S \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{1+\cos \theta}{\sin \theta}= \operatorname{cosec} \theta+\cot \theta \\ \text { L.H.S. } \sqrt{\frac{1+\cos \theta}{1-\cos \theta}} =\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}} \\ =\sqrt{\frac{(1 +\cos \theta)^2}{1-\cos ^2 \theta}} \\ =\frac{1+\cos \theta}{\sqrt{\sin ^2 \theta}} \\ =\frac{1+\cos \theta}{\sin \theta}=\text{M.H.S.} \\ =\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta} \\ =\operatorname{cosec} \theta+\cot \theta=\text{R.H.S} 1 − c o s θ 1 + c o s θ = s i n θ 1 + c o s θ = cosec θ + cot θ L.H.S. 1 − c o s θ 1 + c o s θ = 1 − c o s θ 1 + c o s θ × 1 + c o s θ 1 + c o s θ = 1 − c o s 2 θ ( 1 + c o s θ ) 2 = s i n 2 θ 1 + c o s θ = s i n θ 1 + c o s θ = M.H.S. = s i n θ 1 + s i n θ c o s θ = cosec θ + cot θ = R.H.S
Example:11. ( 1 + cot 2 θ ) ( 1 − cos θ ) ( 1 + cos θ ) = 1 \left(1+\cot ^2 \theta\right)(1-\cos \theta)(1+\cos \theta)=1 ( 1 + cot 2 θ ) ( 1 − cos θ ) ( 1 + cos θ ) = 1 Solution: ( 1 + cot 2 θ ) ( 1 − cos θ ) ( 1 + cos θ ) = 1 L.H.S. ( 1 + cot 2 θ ) ( 1 − cos θ ) ( 1 + cos θ ) = ( cosec 2 θ ) ( 1 − cos 2 θ ) [ ∵ 1 + cot 2 θ = cosec 2 θ ] = cosec 2 θ sin 2 θ = 1 = R.H.S. [ ∵ cosec θ sin θ = 1 ] \left(1+\cot ^2 \theta\right)(1-\cos \theta)(1+\cos \theta)=1 \\ \text { L.H.S. }\left(1+\cot ^2 \theta\right)(1-\cos \theta)(1+\cos \theta) \\ =\left(\operatorname{cosec}^2 \theta\right)\left(1-\cos ^2 \theta\right)\left[\because 1+\cot ^2 \theta=\operatorname{cosec}^2 \theta\right] \\=\operatorname{cosec}^2 \theta \sin ^2 \theta \\ =1=\text { R.H.S. }[ \because \operatorname{cosec} \theta \sin \theta=1] ( 1 + cot 2 θ ) ( 1 − cos θ ) ( 1 + cos θ ) = 1 L.H.S. ( 1 + cot 2 θ ) ( 1 − cos θ ) ( 1 + cos θ ) = ( cosec 2 θ ) ( 1 − cos 2 θ ) [ ∵ 1 + cot 2 θ = cosec 2 θ ] = cosec 2 θ sin 2 θ = 1 = R.H.S. [ ∵ cosec θ sin θ = 1 ] विकल्पतः R.H.S. = 1 = 1 2 = ( cosec θ sin θ ) 2 [ ∵ cosec θ sin θ = 1 ] = cosec 2 θ sin 2 θ = ( 1 + cot 2 θ ) ( 1 − cos 2 θ ) = ( 1 + cot 2 θ ) ( 1 − cos θ ) ( 1 + cos θ ) = L.H.S. \text { R.H.S. } =1 \\ =1^2 \\ \\=(\operatorname{cosec} \theta \sin \theta)^2[\because \operatorname{cosec} \theta \sin \theta=1] \\ =\operatorname{cosec}^2 \theta \sin ^2 \theta \\ =\left(1+\cot ^2 \theta\right)\left(1-\cos ^2 \theta\right) \\ =\left(1+\cot ^2 \theta\right)(1-\cos \theta)(1+\cos \theta)=\text{L.H.S.} R.H.S. = 1 = 1 2 = ( cosec θ sin θ ) 2 [ ∵ cosec θ sin θ = 1 ] = cosec 2 θ sin 2 θ = ( 1 + cot 2 θ ) ( 1 − cos 2 θ ) = ( 1 + cot 2 θ ) ( 1 − cos θ ) ( 1 + cos θ ) = L.H.S. Example:12. 1 sec θ − tan θ − 1 cos θ = 1 cos θ − 1 sec θ + tan θ \frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}=\frac{1}{\cos \theta}-\frac{1}{\sec \theta+\tan \theta} s e c θ − t a n θ 1 − c o s θ 1 = c o s θ 1 − s e c θ + t a n θ 1 Solution: 1 sec θ − tan θ − 1 cos θ = 1 cos θ − 1 sec θ + tan θ L.H.S. 1 sec θ − tan θ − 1 cos θ = ( sec θ + tan θ ) ( sec θ − tan θ ) ( sec θ + tan θ ) − 1 cos θ = sec θ + tan θ sec 2 θ − tan 2 θ − 1 cos θ = sec θ + tan θ − sec θ [ ∵ sec 2 θ − tan 2 θ = 1 ] = 1 cos θ − ( sec θ − tan θ ) = 1 cos θ − ( sec θ − tan θ ) ( sec θ + tan θ ) ( sec θ + tan θ ) = 1 cos θ − sec 2 θ − tan 2 θ sec θ + tan θ = 1 cos θ = 1 sec θ + tan θ = R.H.S. \frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}=\frac{1}{\cos \theta}-\frac{1}{\sec \theta+\tan \theta} \\ \text { L.H.S.} \frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta} \\=\frac{(\sec \theta+\tan \theta)}{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}-\frac{1}{\cos \theta} \\ =\frac{\sec \theta+\tan \theta}{\sec ^2 \theta-\tan ^2 \theta}-\frac{1}{\cos \theta} \\ =\sec \theta+\tan \theta-\sec \theta\left[\because \sec ^2 \theta-\tan ^2 \theta=1\right] \\ =\frac{1}{\cos \theta}-(\sec \theta-\tan \theta) \\ =\frac{1}{\cos \theta}-\frac{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{(\sec \theta+\tan \theta)} \\ =\frac{1}{\cos \theta}-\frac{\sec ^2 \theta-\tan ^2 \theta}{\sec \theta+\tan \theta} \\ =\frac{1}{\cos \theta}=\frac{1}{\sec \theta+\tan \theta}=\text { R.H.S. } s e c θ − t a n θ 1 − c o s θ 1 = c o s θ 1 − s e c θ + t a n θ 1 L.H.S. s e c θ − t a n θ 1 − c o s θ 1 = ( s e c θ − t a n θ ) ( s e c θ + t a n θ ) ( s e c θ + t a n θ ) − c o s θ 1 = s e c 2 θ − t a n 2 θ s e c θ + t a n θ − c o s θ 1 = sec θ + tan θ − sec θ [ ∵ sec 2 θ − tan 2 θ = 1 ] = c o s θ 1 − ( sec θ − tan θ ) = c o s θ 1 − ( s e c θ + t a n θ ) ( s e c θ − t a n θ ) ( s e c θ + t a n θ ) = c o s θ 1 − s e c θ + t a n θ s e c 2 θ − t a n 2 θ = c o s θ 1 = s e c θ + t a n θ 1 = R.H.S. Example:13.sec θ − tan θ sec θ + tan θ = 1 − 2 sec θ tan θ \frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=1-2 \sec \theta \tan \theta s e c θ + t a n θ s e c θ − t a n θ = 1 − 2 sec θ tan θ Solution: sec θ − tan θ sec θ + tan θ = 1 − 2 sec θ tan θ + 2 tan 2 θ L.H.S. sec θ − tan θ sec θ + tan θ \frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=1-2 \sec \theta \tan \theta+2 \tan^2 \theta \\ \text { L.H.S. } \frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta} s e c θ + t a n θ s e c θ − t a n θ = 1 − 2 sec θ tan θ + 2 tan 2 θ L.H.S. s e c θ + t a n θ s e c θ − t a n θ अंश व हर को sec θ tan θ \sec \theta \tan \theta sec θ tan θ से गुणा करने परः = ( sec θ − tan θ ) ( sec θ − sen θ ) ( sec θ + tan θ ) ( sec θ − tan θ ) = sec 2 θ + tan 2 θ − 2 sec θ tan θ sec 2 θ − tan 2 θ = 1 + tan 2 θ + tan 2 θ − 2 sec θ tan θ [ ∵ sec 2 θ = 1 + tan 2 θ तथा sec 2 θ − tan 2 θ = 1 ] = 1 − 2 sec θ ⋅ tan θ + 2 tan 2 θ = R.H.S. \frac{(\sec \theta-\tan \theta)(\sec \theta-\operatorname{sen} \theta)}{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)} \\ =\frac{\sec ^2 \theta+\tan ^2 \theta-2 \sec \theta \tan \theta}{\sec ^2 \theta-\tan ^2 \theta} \\=1+\tan ^2 \theta+\tan ^2 \theta-2 \sec \theta \tan \theta \\ \left[ \because \sec ^2 \theta =1+\tan ^2 \theta \text{ तथा } \sec ^2 \theta-\tan ^2 \theta=1 \right] \\ =1- 2\sec \theta \cdot \tan \theta+2 \tan ^2 \theta=\text { R.H.S. } ( s e c θ + t a n θ ) ( s e c θ − t a n θ ) ( s e c θ − t a n θ ) ( s e c θ − sen θ ) = s e c 2 θ − t a n 2 θ s e c 2 θ + t a n 2 θ − 2 s e c θ t a n θ = 1 + tan 2 θ + tan 2 θ − 2 sec θ tan θ [ ∵ sec 2 θ = 1 + tan 2 θ तथा sec 2 θ − tan 2 θ = 1 ] = 1 − 2 sec θ ⋅ tan θ + 2 tan 2 θ = R.H.S. Example:14.sin 2 θ cos θ + tan θ sin θ + cos 3 θ = sec θ \sin ^2 \theta \cos \theta+\tan \theta \sin \theta+\cos ^3 \theta=\sec \theta sin 2 θ cos θ + tan θ sin θ + cos 3 θ = sec θ Solution:sin 2 θ cos θ + tan θ sin θ + cos 3 θ = sec θ L.H.S. sin 2 θ cos θ + tan θ sin θ + cos 3 θ = sin 2 θ cos θ + cos 3 θ + tan θ sin θ = cos θ ( sin 2 θ + cos 2 θ ) + tan θ sin θ = cos θ + sin θ cos θ ⋅ sin θ [ ∵ tan θ = sin θ cos θ ] = cos θ + sin 2 θ cos θ = cos 2 θ + sin 2 θ cos θ = 1 cos θ = sec θ = R.H.S. \sin ^2 \theta \cos \theta+\tan \theta \sin \theta+\cos ^3 \theta=\sec \theta \\ \text { L.H.S. } \sin ^2 \theta \cos \theta+\tan \theta \sin \theta+\cos ^3 \theta \\ = \sin ^2 \theta \cos \theta+\cos ^3 \theta+\tan \theta \sin \theta \\ =\cos \theta\left(\sin ^2 \theta+\cos ^2 \theta\right)+\tan \theta \sin \theta \\ =\cos \theta +\frac{\sin \theta}{\cos \theta} \cdot \sin \theta \left[ \because \tan \theta=\frac{\sin \theta}{\cos \theta}\right] \\ =\cos \theta+\frac{\sin ^2 \theta}{\cos \theta} \\ =\frac{\cos ^2 \theta+\sin ^2 \theta}{\cos \theta}=\frac{1}{\cos \theta}=\sec \theta=\text{ R.H.S.} sin 2 θ cos θ + tan θ sin θ + cos 3 θ = sec θ L.H.S. sin 2 θ cos θ + tan θ sin θ + cos 3 θ = sin 2 θ cos θ + cos 3 θ + tan θ sin θ = cos θ ( sin 2 θ + cos 2 θ ) + tan θ sin θ = cos θ + c o s θ s i n θ ⋅ sin θ [ ∵ tan θ = c o s θ s i n θ ] = cos θ + c o s θ s i n 2 θ = c o s θ c o s 2 θ + s i n 2 θ = c o s θ 1 = sec θ = R.H.S. Example:15. ( 1 + cot θ − cosec θ ) ( 1 + tan θ + sec θ ) = 2 (1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta)=2 ( 1 + cot θ − cosec θ ) ( 1 + tan θ + sec θ ) = 2 Solution:( 1 + cot θ − cosec θ ) ( 1 + tan θ + sec θ ) = 2 L.H.S. ( 1 + cot θ − cosec θ ) ( 1 + tan θ + sec θ ) = ( 1 + cos θ sin θ − 1 sin θ ) ( 1 + sin θ cos θ + 1 cos θ ) [ cot θ = cos θ sin θ , cosec θ = 1 sin θ ] = ( sin θ + cos θ − 1 sin θ ) ( cos θ + sin θ + 1 cos θ ) = ( sin θ + cos θ ) 2 − 1 sin θ cos θ [ ∵ ( a + b ) ( a − b ) = a 2 − b 2 ] = sin 2 θ + cos 2 θ + 2 sin θ cos θ − 1 sin θ cos θ = 1 + 2 sin θ cos θ − 1 sin θ cos θ = 2 sin θ cos θ sin θ cos θ = 2 = R.H.S. (1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta)=2 \\ \text{L.H.S. } (1+\cot \theta -\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta) \\ =\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)\left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right)\left[ \cot \theta=\frac{\cos \theta}{\sin \theta} ,\operatorname{cosec} \theta=\frac{1}{\sin \theta}\right] \\ =\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right)\left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right) \\ =\frac{(\sin \theta+\cos \theta)^2-1}{\sin \theta \cos \theta} \quad\left[ \because (a+b)(a-b)=a^2-b^2\right] \\ =\frac{\sin ^2 \theta+\cos ^2 \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\ =\frac{1+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\ =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2=\text { R.H.S. } ( 1 + cot θ − cosec θ ) ( 1 + tan θ + sec θ ) = 2 L.H.S. ( 1 + cot θ − cosec θ ) ( 1 + tan θ + sec θ ) = ( 1 + s i n θ c o s θ − s i n θ 1 ) ( 1 + c o s θ s i n θ + c o s θ 1 ) [ cot θ = s i n θ c o s θ , cosec θ = s i n θ 1 ] = ( s i n θ s i n θ + c o s θ − 1 ) ( c o s θ c o s θ + s i n θ + 1 ) = s i n θ c o s θ ( s i n θ + c o s θ ) 2 − 1 [ ∵ ( a + b ) ( a − b ) = a 2 − b 2 ] = s i n θ c o s θ s i n 2 θ + c o s 2 θ + 2 s i n θ c o s θ − 1 = s i n θ c o s θ 1 + 2 s i n θ c o s θ − 1 = s i n θ c o s θ 2 s i n θ c o s θ = 2 = R.H.S. Example:16. cot θ cos θ cot θ + cos θ = cot θ − cos θ cot θ cos θ \frac{\cot \theta \cos \theta}{\cot \theta+\cos \theta}=\frac{\cot \theta-\cos \theta}{\cot \theta \cos \theta} c o t θ + c o s θ c o t θ c o s θ = c o t θ c o s θ c o t θ − c o s θ Solution:cot θ cos θ cot θ + cos θ = cot θ − cos θ cot θ cos θ L.H.S. cot θ cos θ cos t θ + cos θ \frac{\cot \theta \cos \theta}{\cot \theta+\cos \theta}=\frac{\cot \theta-\cos \theta}{\cot \theta \cos \theta} \\ \text{L.H.S.} \frac{\cot \theta \cos \theta}{\cos t \theta+\cos \theta} c o t θ + c o s θ c o t θ c o s θ = c o t θ c o s θ c o t θ − c o s θ L.H.S. c o s tθ + c o s θ c o t θ c o s θ अंश व हर को cot θ − cos θ \cot \theta-\cos \theta cot θ − cos θ से गुणा करने परः( cot θ cos θ ) ( cot θ − cos θ ) ( cot θ + cos θ ) ( cot θ − cos θ ) = ( cot θ cos θ ) ( cot θ − cos θ ) cot 2 θ − cos 2 θ = ( cot θ cos θ ) ( cot θ − cos θ ) cosec 2 θ − 1 − cos 2 θ = ( cot θ cos θ ) ( cot θ − cos θ ) cosec 2 θ − 1 − cos 2 θ [ ∵ cot 2 θ = cosec 2 θ − 1 ] = ( cot θ cos θ ) ( cot θ − cos θ ) 1 sin 2 θ − 1 − cos 2 θ [ ∵ cosec 2 θ = 1 sin 2 θ ] = ( cot θ cos θ ) ( cot θ − cos θ ) 1 − sin 2 θ − cos 2 θ sin 2 θ sin 2 θ = ( cot θ cos θ ) ( cot θ − cos θ ) cosec 2 θ ( cos 2 θ − cos 2 θ sin 2 θ ) = ( cot θ cos θ ) ( cot θ − cos θ ) cosec 2 θ ⋅ cos 2 θ ( 1 − sin 2 θ ) = ( cot θ cos θ ) ( cot θ − cos θ ) cosec 2 θ cos 2 θ cos 2 θ = ( cot θ cos θ ) ( cot θ − cos θ ) cot 2 θ cos 2 θ [ ∵ cosec 2 θ cos 2 θ = cot 2 θ ] = cot θ − cos θ cot θ cos θ = R.H.S \frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{(\cot \theta+\cos \theta)(\cot \theta-\cos \theta)} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\cot ^2 \theta-\cos ^2 \theta} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\operatorname{cosec}^2 \theta-1-\cos ^2 \theta} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\operatorname{cosec}^2 \theta-1-\cos ^2 \theta} \left[ \because \cot^2 \theta=\operatorname{cosec}^2 \theta-1 \right]\\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\frac{1}{\sin ^2 \theta}-1-\cos ^2 \theta } \left[ \because \operatorname{cosec}^2 \theta=\frac{1}{\sin ^2 \theta} \right] \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\frac{1-\sin ^2 \theta-\cos ^2 \theta \sin ^2 \theta}{\sin^2 \theta}}\\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\operatorname{cosec}^2 \theta\left(\cos ^2 \theta-\cos ^2 \theta \sin ^2 \theta\right)} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{ \operatorname{cosec}^2 \theta \cdot \cos ^2 \theta\left(1-\sin ^2 \theta\right)} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\operatorname{cosec}^2 \theta \cos ^2 \theta \cos ^2 \theta} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\cot ^2 \theta \cos ^2 \theta}\left[ \because \operatorname{cosec}^2 \theta \cos ^2 \theta =\cot ^2 \theta \right] \\=\frac{\cot \theta-\cos \theta}{\cot \theta \cos \theta}=\text { R.H.S } ( c o t θ + c o s θ ) ( c o t θ − c o s θ ) ( c o t θ c o s θ ) ( c o t θ − c o s θ ) = c o t 2 θ − c o s 2 θ ( c o t θ c o s θ ) ( c o t θ − c o s θ ) = cosec 2 θ − 1 − c o s 2 θ ( c o t θ c o s θ ) ( c o t θ − c o s θ ) = cosec 2 θ − 1 − c o s 2 θ ( c o t θ c o s θ ) ( c o t θ − c o s θ ) [ ∵ cot 2 θ = cosec 2 θ − 1 ] = s i n 2 θ 1 − 1 − c o s 2 θ ( c o t θ c o s θ ) ( c o t θ − c o s θ ) [ ∵ cosec 2 θ = s i n 2 θ 1 ] = s i n 2 θ 1 − s i n 2 θ − c o s 2 θ s i n 2 θ ( c o t θ c o s θ ) ( c o t θ − c o s θ ) = cosec 2 θ ( c o s 2 θ − c o s 2 θ s i n 2 θ ) ( c o t θ c o s θ ) ( c o t θ − c o s θ ) = cosec 2 θ ⋅ c o s 2 θ ( 1 − s i n 2 θ ) ( c o t θ c o s θ ) ( c o t θ − c o s θ ) = cosec 2 θ c o s 2 θ c o s 2 θ ( c o t θ c o s θ ) ( c o t θ − c o s θ ) = c o t 2 θ c o s 2 θ ( c o t θ c o s θ ) ( c o t θ − c o s θ ) [ ∵ cosec 2 θ cos 2 θ = cot 2 θ ] = c o t θ c o s θ c o t θ − c o s θ = R.H.S Example:17. tan 3 θ − 1 tan 2 θ − 1 = sec 2 θ + tan θ \frac{\tan ^3 \theta-1}{\tan ^2 \theta-1}=\sec ^2 \theta+\tan \theta t a n 2 θ − 1 t a n 3 θ − 1 = sec 2 θ + tan θ Solution: tan 3 θ − 1 tan θ − 1 = sec 2 θ + tan θ L.H.S. tan 3 θ − 1 tan θ − 1 = ( tan θ − 1 ) ( tan 2 θ + 1 + tan θ ) ( tan θ − 1 ) = 1 + tan 2 θ + tan θ = sec 2 θ + tan θ = R.H.S. \frac{\tan ^3 \theta-1}{\tan \theta-1}=\sec ^2 \theta+\tan \theta \\ \text { L.H.S. } \frac{\tan ^3 \theta-1}{\tan \theta-1} \\ =\frac{(\tan \theta-1)\left(\tan ^2 \theta+1+\tan \theta\right)}{(\tan \theta-1)} \\ =1+\tan ^2 \theta+\tan \theta \\ =\sec ^2 \theta+\tan \theta=\text { R.H.S. } t a n θ − 1 t a n 3 θ − 1 = sec 2 θ + tan θ L.H.S. t a n θ − 1 t a n 3 θ − 1 = ( t a n θ − 1 ) ( t a n θ − 1 ) ( t a n 2 θ + 1 + t a n θ ) = 1 + tan 2 θ + tan θ = sec 2 θ + tan θ = R.H.S. Example:18. sec 6 θ − tan 6 θ = 1 + 3 tan 2 θ + 3 tan 4 θ \sec ^6 \theta-\tan ^6 \theta=1+3 \tan ^2 \theta+3 \tan 4 \theta sec 6 θ − tan 6 θ = 1 + 3 tan 2 θ + 3 tan 4 θ Solution: sec 6 θ − tan 6 θ = 1 + 3 tan 2 θ + 3 tan 2 θ L.H.S. sec 6 θ − tan 6 θ = ( sec 2 θ ) 3 − ( tan 2 θ ) 3 = ( sec 2 θ − tan 2 θ ) [ sec 4 θ + tan 4 θ + sec 2 θ tan 2 θ ] = ( 1 ) [ sec 4 θ + tan 4 θ − 2 sec 2 θ tan 2 θ + 3 sec 2 θ tan 2 θ ] = [ ( sec 2 θ − tan 2 θ ) 2 + 3 sec 2 θ tan 2 θ ] = [ 1 2 + 3 sec 2 θ tan 2 θ ] [ ∵ sec 2 θ − tan 2 θ = 1 ] = 1 + 3 sec 2 θ tan 2 θ = R.H.S. \sec ^6 \theta-\tan ^6 \theta=1+3 \tan ^2 \theta+3 \tan ^2 \theta \\ \text { L.H.S. } \sec ^6 \theta-\tan ^6 \theta \\ =\left(\sec ^2 \theta\right)^3-\left(\tan ^2 \theta\right)^3 \\ =\left(\sec ^2 \theta-\tan ^2 \theta\right)\left[\sec ^4 \theta+\tan ^4 \theta+\sec ^2 \theta \tan ^2 \theta\right] \\ =(1)\left[\sec ^4 \theta+\tan ^4 \theta-2 \sec ^2 \theta \tan ^2 \theta+3 \sec ^2 \theta \tan ^2 \theta\right] \\ =\left[\left(\sec ^2 \theta-\tan ^2 \theta\right)^2+3 \sec ^2 \theta \tan ^2 \theta\right] \\ =\left[1^2+3 \sec ^2 \theta \tan ^2 \theta\right]\left[\because \sec ^2 \theta-\tan ^2 \theta=1\right] \\ =1+3 \sec ^2 \theta \tan ^2 \theta=\text{R.H.S.} sec 6 θ − tan 6 θ = 1 + 3 tan 2 θ + 3 tan 2 θ L.H.S. sec 6 θ − tan 6 θ = ( sec 2 θ ) 3 − ( tan 2 θ ) 3 = ( sec 2 θ − tan 2 θ ) [ sec 4 θ + tan 4 θ + sec 2 θ tan 2 θ ] = ( 1 ) [ sec 4 θ + tan 4 θ − 2 sec 2 θ tan 2 θ + 3 sec 2 θ tan 2 θ ] = [ ( sec 2 θ − tan 2 θ ) 2 + 3 sec 2 θ tan 2 θ ] = [ 1 2 + 3 sec 2 θ tan 2 θ ] [ ∵ sec 2 θ − tan 2 θ = 1 ] = 1 + 3 sec 2 θ tan 2 θ = R.H.S. Example:19. tan 2 A − tan 2 B = cos 2 B − cos 2 A cos 2 A cos 2 B = sin 2 A − sin 2 B cos 2 A cos 2 B \tan ^2 A-\tan ^2 B=\frac{\cos ^2 B-\cos ^2 A}{\cos ^2 A \cos ^2 B}=\frac{\sin ^2 A-\sin ^2 B}{\cos ^2 A \cos ^2 B} tan 2 A − tan 2 B = c o s 2 A c o s 2 B c o s 2 B − c o s 2 A = c o s 2 A c o s 2 B s i n 2 A − s i n 2 B Solution: tan 2 A − tan 2 B = cos 2 B − cos 2 A cos 2 A cos 2 B = sin 2 A − sin 2 B cos 2 A cos 2 B L.H.S. tan 2 A − tan 2 B = sin 2 A cos 2 A − sin 2 B cos 2 B = sin 2 A ( cos 2 B ) − cos 2 A sin 2 B cos 2 A cos 2 B = ( 1 − cos 2 A ) cos 2 B − cos 2 A ( 1 − cos 2 B ) cos 2 A cos 2 B = cos 2 B − cos 2 A cos 2 B − cos 2 A + cos 2 A cos 2 B cos 2 A cos 2 B = cos 2 B − cos 2 A cos 2 A cos 2 B = M.H.S. = 1 − sin 2 B − ( 1 − sin 2 A ) cos 2 A cos 2 B = 1 − sin 2 B − 1 + sin 2 A cos 2 A cos 2 B = sin 2 A − sin 2 B cos 2 A ⋅ cos 2 B = R.H.S. \tan ^2 A-\tan ^2 B=\frac{\cos ^2 B-\cos ^2 A}{\cos ^2 A \cos ^2 B}=\frac{\sin ^2 A-\sin ^2 B}{\cos ^2 A \cos ^2 B}\\ \text { L.H.S.} \tan ^2 A -\tan ^2 B \\ =\frac{\sin ^2 A}{\cos ^2 A}-\frac{\sin ^2 B}{\cos ^2 B} \\ =\frac{\sin ^2 A\left(\cos ^2 B\right)-\cos ^2 A \sin ^2 B}{\cos ^2 A \cos ^2 B} \\ =\frac{\left(1-\cos ^2 A\right) \cos ^2 B-\cos ^2 A\left(1-\cos ^2 B\right)}{\cos ^2 A \cos ^2 B} \\ =\frac{\cos ^2 B-\cos ^2 A \cos ^2 B-\cos ^2 A+\cos ^2 A \cos ^2 B}{\cos ^2 A \cos ^2 B} \\ =\frac{\cos ^2 B-\cos ^2 A}{\cos ^2 A \cos ^2 B}=\text{M.H.S.} \\=\frac{1-\sin ^2 B-\left(1-\sin ^2 A\right)}{\cos ^2 A \cos ^2 B} \\ =\frac{1-\sin ^2 B-1+\sin ^2 A}{\cos ^2 A \cos ^2 B} \\ =\frac{\sin ^2 A-\sin ^2 B}{\cos ^2 A \cdot \cos ^2 B}=\text { R.H.S. } tan 2 A − tan 2 B = c o s 2 A c o s 2 B c o s 2 B − c o s 2 A = c o s 2 A c o s 2 B s i n 2 A − s i n 2 B L.H.S. tan 2 A − tan 2 B = c o s 2 A s i n 2 A − c o s 2 B s i n 2 B = c o s 2 A c o s 2 B s i n 2 A ( c o s 2 B ) − c o s 2 A s i n 2 B = c o s 2 A c o s 2 B ( 1 − c o s 2 A ) c o s 2 B − c o s 2 A ( 1 − c o s 2 B ) = c o s 2 A c o s 2 B c o s 2 B − c o s 2 A c o s 2 B − c o s 2 A + c o s 2 A c o s 2 B = c o s 2 A c o s 2 B c o s 2 B − c o s 2 A = M.H.S. = c o s 2 A c o s 2 B 1 − s i n 2 B − ( 1 − s i n 2 A ) = c o s 2 A c o s 2 B 1 − s i n 2 B − 1 + s i n 2 A = c o s 2 A ⋅ c o s 2 B s i n 2 A − s i n 2 B = R.H.S. Example:20.tan 2 θ tan 2 θ − 1 + cosec 2 θ sec 2 θ − cosec 2 θ = 1 sin 2 θ − cos 2 θ \frac{\tan ^2 \theta}{\tan ^2 \theta-1}+\frac{\operatorname{cosec}^2 \theta}{\sec ^2 \theta-\operatorname{cosec}^2 \theta}=\frac{1}{\sin ^2 \theta-\cos ^2 \theta} t a n 2 θ − 1 t a n 2 θ + s e c 2 θ − cosec 2 θ cosec 2 θ = s i n 2 θ − c o s 2 θ 1 Solution: tan 2 θ tan 2 θ − 1 + cosec 2 θ sec 2 θ − cosec 2 θ = 1 sin 2 θ − cos 2 θ L.H.S tan 2 θ tan 2 θ − 1 + cosec 2 θ sec 2 θ − c o s e c 2 θ = sin 2 θ cos 2 θ sin 2 θ cos 2 θ − 1 + 1 sin 2 θ 1 cos 2 θ − 1 sin 2 θ = sin 2 θ sin 2 θ − cos 2 θ + cos 2 θ sin 2 θ − cos 2 θ = sin 2 θ + cos 2 θ sin 2 θ − cos 2 θ = 1 sin 2 θ − cos 2 θ = R.H.S. \frac{\tan ^2 \theta}{\tan ^2 \theta-1}+\frac{\operatorname{cosec}^2 \theta}{\sec ^2 \theta-\operatorname{cosec}^2 \theta}=\frac{1}{\sin ^2 \theta-\cos ^2 \theta} \\ \text { L.H.S } \frac{\tan ^2 \theta}{\tan ^2 \theta-1}+\frac{\operatorname{cosec}^2 \theta}{\sec ^2 \theta-cosec^2 \theta} \\ =\frac{\frac{\sin ^2 \theta}{\cos ^2 \theta}}{\frac{\sin ^2 \theta}{\cos ^2 \theta}-1}+\frac{\frac{1}{\sin ^2 \theta}}{\frac{1}{\cos ^2 \theta}-\frac{1}{\sin ^2 \theta}} \\ =\frac{\sin ^2 \theta}{\sin ^2 \theta-\cos ^2 \theta}+\frac{\cos ^2 \theta}{\sin ^2 \theta-\cos ^2 \theta} \\ =\frac{\sin ^2 \theta+\cos ^2 \theta}{\sin ^2 \theta-\cos ^2 \theta} \\ =\frac{1}{\sin ^2 \theta-\cos ^2 \theta}=\text { R.H.S. } t a n 2 θ − 1 t a n 2 θ + s e c 2 θ − cosec 2 θ cosec 2 θ = s i n 2 θ − c o s 2 θ 1 L.H.S t a n 2 θ − 1 t a n 2 θ + s e c 2 θ − cose c 2 θ cosec 2 θ = c o s 2 θ s i n 2 θ − 1 c o s 2 θ s i n 2 θ + c o s 2 θ 1 − s i n 2 θ 1 s i n 2 θ 1 = s i n 2 θ − c o s 2 θ s i n 2 θ + s i n 2 θ − c o s 2 θ c o s 2 θ = s i n 2 θ − c o s 2 θ s i n 2 θ + c o s 2 θ = s i n 2 θ − c o s 2 θ 1 = R.H.S. Example:21. cosec θ cosec θ − 1 + cosec θ cosec θ + 1 = 2 sec 2 θ \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-1}+ \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta+1}=2 \sec ^2 \theta cosec θ − 1 cosec θ + cosec θ + 1 cosec θ = 2 sec 2 θ Solution: cosec θ cosec θ − 1 + cosec θ cosec θ + 1 = 2 sec 2 θ L.H.S. cosec θ cosec θ − 1 + cosec θ cosec θ + 1 = cosec θ ( cosec θ + 1 ) + cosec θ ( cosec θ − 1 ) ( cosec θ − 1 ) ( cosec θ + 1 ) = cosec 2 θ + cosec θ + cosec 2 θ − cosec θ cosec 2 θ − 1 = 2 cosec 2 θ cot 2 θ = 2 sin 2 θ cos 2 θ sin 2 θ = 2 sin 2 θ × sin 2 θ cos 2 θ = 2 cos 2 θ = 2 sec 2 θ = R.H.S. \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-1}+\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta+1}=2 \sec ^2 \theta \\ \text{L.H.S. } \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-1}+\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta+1} \\ =\frac{\operatorname{cosec} \theta(\operatorname{cosec} \theta+1)+\operatorname{cosec} \theta(\operatorname{cosec} \theta-1)}{(\operatorname{cosec} \theta-1)(\operatorname{cosec} \theta+1)} \\ =\frac{\operatorname{cosec}^2 \theta+\operatorname{cosec} \theta+\operatorname{cosec}^2 \theta-\operatorname{cosec} \theta}{\operatorname{cosec}^2 \theta-1} \\ =\frac{2 \operatorname{cosec}^2 \theta}{\cot ^2 \theta} \\ =\frac{\frac{2}{\sin ^2 \theta}}{\frac{\cos ^2 \theta}{\sin ^2 \theta}} \\ =\frac{2}{\sin ^2 \theta} \times \frac{\sin ^2 \theta}{\cos ^2 \theta} \\ =\frac{2}{\cos ^2 \theta}=2 \sec ^2 \theta=\text { R.H.S. } cosec θ − 1 cosec θ + cosec θ + 1 cosec θ = 2 sec 2 θ L.H.S. cosec θ − 1 cosec θ + cosec θ + 1 cosec θ = ( cosec θ − 1 ) ( cosec θ + 1 ) cosec θ ( cosec θ + 1 ) + cosec θ ( cosec θ − 1 ) = cosec 2 θ − 1 cosec 2 θ + cosec θ + cosec 2 θ − cosec θ = c o t 2 θ 2 cosec 2 θ = s i n 2 θ c o s 2 θ s i n 2 θ 2 = s i n 2 θ 2 × c o s 2 θ s i n 2 θ = c o s 2 θ 2 = 2 sec 2 θ = R.H.S. Example:22. ( tan A + cosec B ) 2 − ( cot B − sec A ) 2 = 2 tan A cot B ( cosec A + sec B ) (\tan A+\operatorname{cosec} B)^2-(\cot B-\sec A)^2 =2 \tan A \cot B(\operatorname{cosec} A+\sec B) ( tan A + cosec B ) 2 − ( cot B − sec A ) 2 = 2 tan A cot B ( cosec A + sec B ) Solution: ( tan A + cosec B ) 2 − ( cot B − sec A ) 2 = 2 tan A cot B ( cosec A + sec B ) L.H.S ( tan A + cosec B ) 2 − ( cot B − sec A ) 2 = tan 2 A + cosec 2 B − ( cot 2 B + sec 2 A + 2 tan A cosec B − 2 cot B ⋅ sec A ) = tan 2 A + cosec 2 B + 2 tan A cosec B − cot 2 B − sec 2 A + 2 cot B sec A = − ( sec 2 A − tan 2 A ) + ( cosec 2 B − cot 2 B ) + 2 tan A cot B ( cosec B cot B + sec A tan A ) = − 1 + 1 + 2 tan A cot B ( sec B + cosec A ) = 2 tan A cot B ( sec B + cosec A ) = R.H.S. (\tan A+\operatorname{cosec} B)^2-(\cot B-\sec A)^2 \\ =2 \tan A \cot B(\operatorname{cosec} A+\sec B) \\ \text { L.H.S }(\tan A+ \operatorname{cosec} B)^2-(\cot B-\sec A)^2 \\ =\tan ^2 A+ \operatorname{cosec}^2 B-\left(\cot ^2 B+\sec ^2 A +2 \tan A \operatorname{cosec} B -2 \cot B \cdot \sec A\right) \\ =\tan ^2 A+\operatorname{cosec}^2 B+2 \tan A \operatorname{cosec} B -\cot ^2 B-\sec ^2 A+2 \cot B \sec A \\ =-\left(\sec ^2 A-\tan ^2 A\right)+\left(\operatorname{cosec}^2 B-\cot ^2 B\right) +2 \tan A \cot B\left( \frac{\operatorname{cosec} B}{\cot B}+\frac{\sec A}{\tan A}\right) \\ =-1+1+2 \tan A \cot B(\sec B+\operatorname{cosec} A) \\ =2 \tan A \cot B(\sec B+\operatorname{cosec} A)=\text{R.H.S.} ( tan A + cosec B ) 2 − ( cot B − sec A ) 2 = 2 tan A cot B ( cosec A + sec B ) L.H.S ( tan A + cosec B ) 2 − ( cot B − sec A ) 2 = tan 2 A + cosec 2 B − ( cot 2 B + sec 2 A + 2 tan A cosec B − 2 cot B ⋅ sec A ) = tan 2 A + cosec 2 B + 2 tan A cosec B − cot 2 B − sec 2 A + 2 cot B sec A = − ( sec 2 A − tan 2 A ) + ( cosec 2 B − cot 2 B ) + 2 tan A cot B ( c o t B cosec B + t a n A s e c A ) = − 1 + 1 + 2 tan A cot B ( sec B + cosec A ) = 2 tan A cot B ( sec B + cosec A ) = R.H.S. Example:23. 2 sec 2 θ − sec 4 θ − 2 cosec 2 θ + cosec 4 θ = cot 4 θ − tan 4 θ 2 \sec ^2 \theta-\sec ^4 \theta-2 \operatorname{cosec}^2 \theta+ \operatorname{cosec}^4 \theta=\cot ^4 \theta-\tan ^4 \theta 2 sec 2 θ − sec 4 θ − 2 cosec 2 θ + cosec 4 θ = cot 4 θ − tan 4 θ Solution: 2 sec 2 θ − sec 4 θ − 2 cosec 2 θ + cosec 4 θ = cot 4 θ − tan 4 θ L.H.S. 2 sec 2 θ − sec 4 θ − 2 cosec 2 θ + cosec 4 θ = 2 ( sec 2 θ − cosec 2 θ ) − ( sec 4 θ − cosec 4 θ ) = 2 ( sec 2 θ − cosec 2 θ ) − ( sec 2 θ − cosec 2 θ ) ( sec 2 θ + cosec 2 θ ) = ( sec 2 θ − cosec 2 θ ) ( 2 − sec 2 θ − cosec 2 θ ) = ( tan 2 θ − cot 2 θ ) ( 2 − 1 − tan 2 θ − 1 − cot 2 θ ) = ( cot 2 θ − tan 2 θ ) ( cot 2 θ + tan 2 θ ) = cot 4 θ − tan 4 θ = R.H.S. 2 \sec ^2 \theta-\sec ^4 \theta-2 \operatorname{cosec}^2 \theta+ \operatorname{cosec}^4 \theta=\cot ^4 \theta-\tan ^4 \theta \\ \text { L.H.S. } 2 \sec ^2 \theta-\sec ^4 \theta-2 \operatorname{cosec}^2 \theta+\operatorname{cosec}^4 \theta \\ =2\left(\sec ^2 \theta-\operatorname{cosec}^2 \theta\right)-\left(\sec ^4 \theta-\operatorname{cosec}^4 \theta\right) \\ =2\left(\sec ^2 \theta-\operatorname{cosec}^2 \theta\right)-\left(\sec ^2 \theta-\operatorname{cosec}^2 \theta\right) \left(\sec ^2 \theta+\operatorname{cosec}^2 \theta\right) \\ =\left(\sec ^2 \theta-\operatorname{cosec}^2 \theta\right)\left(2-\sec ^2 \theta -\operatorname{cosec}^2 \theta\right) \\ =\left(\tan ^2 \theta-\cot ^2 \theta\right)\left(2-1-\tan ^2 \theta-1-\cot ^2 \theta\right) \\ =\left(\cot ^2 \theta-\tan ^2 \theta\right)\left(\cot ^2 \theta+\tan ^2 \theta\right) \\ =\cot ^4 \theta-\tan ^4 \theta =\text { R.H.S. } 2 sec 2 θ − sec 4 θ − 2 cosec 2 θ + cosec 4 θ = cot 4 θ − tan 4 θ L.H.S. 2 sec 2 θ − sec 4 θ − 2 cosec 2 θ + cosec 4 θ = 2 ( sec 2 θ − cosec 2 θ ) − ( sec 4 θ − cosec 4 θ ) = 2 ( sec 2 θ − cosec 2 θ ) − ( sec 2 θ − cosec 2 θ ) ( sec 2 θ + cosec 2 θ ) = ( sec 2 θ − cosec 2 θ ) ( 2 − sec 2 θ − cosec 2 θ ) = ( tan 2 θ − cot 2 θ ) ( 2 − 1 − tan 2 θ − 1 − cot 2 θ ) = ( cot 2 θ − tan 2 θ ) ( cot 2 θ + tan 2 θ ) = cot 4 θ − tan 4 θ = R.H.S. Example:24.यदि sin θ + cos θ = p \sin \theta+\cos \theta=p sin θ + cos θ = p और sec θ + cosec θ = q \sec \theta+\operatorname{cosec} \theta=q sec θ + cosec θ = q ,तो सिद्ध कीजिए q ( p 2 − 1 ) = 2 p q\left(p^2-1\right)=2 p q ( p 2 − 1 ) = 2 p Solution: q ( p 2 − 1 ) = 2 p L.H.S. q ( p 2 − 1 ) = ( sec θ + cosec θ ) [ ( sin θ + cos θ ) 2 − 1 ] = 1 cos θ + sin θ ) ( sin 2 θ + cos 2 θ + 2 sin θ cos θ − 1 ) = ( sin θ + cos θ ) sin θ cos θ ( 1 + 2 sin θ cos θ − 1 ) = ( sin θ + cos θ ) sin θ cos θ × 2 sin θ cos θ = 2 ( sin θ + cos θ ) = 2 p = R.H.S. q\left(p^2-1\right)=2 p \\ \text{L.H.S. } q\left(p^2-1\right) \\=(\sec \theta+\operatorname{cosec} \theta)\left[(\sin \theta+\cos \theta)^2-1\right] \\ =\frac{1}{\cos \theta+\sin \theta)} \left(\sin ^2 \theta+\cos ^2 \theta+2 \sin \theta \cos \theta-1\right) \\ =\frac{(\sin \theta+\cos \theta)}{\sin \theta \cos \theta}(1+2 \sin \theta \cos \theta-1) \\ =\frac{(\sin \theta+\cos \theta)}{\sin \theta \cos \theta} \times 2 \sin \theta \cos \theta \\ =2(\sin \theta+\cos \theta) \\ =2 p= \text{R.H.S.} q ( p 2 − 1 ) = 2 p L.H.S. q ( p 2 − 1 ) = ( sec θ + cosec θ ) [ ( sin θ + cos θ ) 2 − 1 ] = c o s θ + s i n θ ) 1 ( sin 2 θ + cos 2 θ + 2 sin θ cos θ − 1 ) = s i n θ c o s θ ( s i n θ + c o s θ ) ( 1 + 2 sin θ cos θ − 1 ) = s i n θ c o s θ ( s i n θ + c o s θ ) × 2 sin θ cos θ = 2 ( sin θ + cos θ ) = 2 p = R.H.S. उपर्युक्त उदाहरणों के द्वारा त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities) को समझ सकते हैं।
3.त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं के सवाल (Trigonometric Identities Class 10th Questions):
निम्नलिखित सर्वसमिकाओं को सिद्ध कीजिए:
(1.) tan θ + cot θ = cosec θ sec θ \tan \theta+\cot \theta=\operatorname{cosec} \theta \sec \theta tan θ + cot θ = cosec θ sec θ (2.) cosec 2 θ + sec 2 θ = cosec 2 θ sec 2 θ \operatorname{cosec}^2 \theta+\sec ^2 \theta=\operatorname{cosec}^2 \theta \sec ^2 \theta cosec 2 θ + sec 2 θ = cosec 2 θ sec 2 θ (3.) ( 1 + tan 2 θ ) ( 1 + sin θ ) ( 1 − sin θ ) = 1 \left(1+\tan ^2 \theta\right)(1+\sin \theta)(1-\sin \theta) =1 ( 1 + tan 2 θ ) ( 1 + sin θ ) ( 1 − sin θ ) = 1 उपर्युक्त सवालों को हल करने पर त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities) को ठीक से समझ सकते हैं।
Also Read This Article:- Imp Illustration of Quadratic Equation
4.त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Frequently Asked Questions Related to Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities) से सम्बन्धित अक्सर पूछे जाने वाले प्रश्न:
प्रश्न:1.त्रिकोणमितीय सर्वसमिकाएँ लिखिए। (Write Trigonometric Identities):
उत्तर: (1.)sin 2 θ + cos 2 θ = 1 , sin 2 θ = 1 − cos 2 θ , cos 2 θ = 1 − sin 2 θ \sin ^2 \theta+\cos ^2 \theta=1 ,\sin^2 \theta=1- \cos ^2 \theta , \cos ^2 \theta=1-\sin ^2 \theta sin 2 θ + cos 2 θ = 1 , sin 2 θ = 1 − cos 2 θ , cos 2 θ = 1 − sin 2 θ (2.) 1 + tan 2 θ = sec 2 θ , sec 2 θ − tan 2 θ = 1 , sec 2 θ − 1 = tan 2 θ 1+\tan^2 \theta=\sec^2 \theta, \sec ^2 \theta-\tan ^2 \theta=1, \sec ^2 \theta-1=\tan^2 \theta 1 + tan 2 θ = sec 2 θ , sec 2 θ − tan 2 θ = 1 , sec 2 θ − 1 = tan 2 θ (3.) 1 + cot 2 θ = cosec 2 θ , cosec 2 θ − cot 2 θ = 1 , cot 2 θ = cosec 2 θ − 1 1+\cot ^2 \theta=\operatorname{cosec}^2 \theta, \operatorname{cosec}^2 \theta-\cot ^2 \theta=1 ,\cot ^2 \theta=\operatorname{cosec}^2 \theta-1 1 + cot 2 θ = cosec 2 θ , cosec 2 θ − cot 2 θ = 1 , cot 2 θ = cosec 2 θ − 1
प्रश्न:2.त्रिकोणमितीय अनुपात लिखिए। (Write Trigonometric Ratios):
उत्तर: sin θ = लम्ब कर्ण , cos θ = आधार कर्ण , tan θ = लम्ब आधार , cot θ = आधार लम्ब , sec θ = कर्ण आधार , cosec θ = कर्ण लम्ब \sin \theta=\frac{\text{लम्ब}}{\text{कर्ण}} , \cos \theta= \frac{\text{आधार}}{\text{कर्ण}}, \tan \theta=\frac{\text{लम्ब}}{\text{आधार}},\cot \theta= \frac{\text{आधार}}{\text{लम्ब}} , \sec \theta=\frac{\text{कर्ण}}{\text{आधार}} ,\operatorname{cosec} \theta= \frac{\text{कर्ण}}{\text{लम्ब}} sin θ = कर्ण लम्ब , cos θ = कर्ण आधार , tan θ = आधार लम्ब , cot θ = लम्ब आधार , sec θ = आधार कर्ण , cosec θ = लम्ब कर्ण
प्रश्न:3.त्रिकोणमितीय अनुपातों के मध्य क्या मूलभूत सम्बन्ध है? (What is the Relations Between Trigonometric Ratios?):
उत्तर: (1.) sin θ = 1 cosec θ , cosec θ = 1 sin θ , sin θ cosec θ = 1 \sin \theta=\frac{1}{\operatorname{cosec} \theta} , \operatorname{cosec} \theta=\frac{1}{\sin \theta} , \sin \theta \operatorname{cosec} \theta=1 sin θ = cosec θ 1 , cosec θ = s i n θ 1 , sin θ cosec θ = 1 (2.) cos θ = 1 sec θ , sec θ = 1 cos θ , cos θ sec θ = 1 \cos \theta=\frac{1}{\sec \theta}, \sec \theta=\frac{1}{\cos \theta} , \cos \theta \sec \theta=1 cos θ = s e c θ 1 , sec θ = c o s θ 1 , cos θ sec θ = 1 (3.) tan θ = 1 cot θ , cot θ = 1 tan θ , tan θ cot θ = 1 \tan \theta=\frac{1}{\cot \theta}, \cot \theta=\frac{1}{\tan \theta}, \tan \theta \cot \theta=1 tan θ = c o t θ 1 , cot θ = t a n θ 1 , tan θ cot θ = 1 (4.)tan θ = sin θ cos θ , cot θ = cos θ sin θ \tan \theta=\frac{\sin \theta}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta} tan θ = c o s θ s i n θ , cot θ = s i n θ c o s θ उपर्युक्त प्रश्नों के उत्तर द्वारा त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities) के बारे में और अधिक जानकारी प्राप्त कर सकते हैं।
Trigonometric Identities Class 10th त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th) Trigonometric Identities Class 10th त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th) के इस आर्टिकल में कुछ विशिष्ट सवालों को हल करेंगे जो त्रिकोणमितीय सर्वसमिकाओं पर आधारित हैं।