Menu

Trigonometric Identities Class 10th

Contents hide
1 1.त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities):

1.त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities):

त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th) के इस आर्टिकल में कुछ विशिष्ट सवालों को हल करेंगे जो त्रिकोणमितीय सर्वसमिकाओं पर आधारित हैं।
आपको यह जानकारी रोचक व ज्ञानवर्धक लगे तो अपने मित्रों के साथ इस गणित के आर्टिकल को शेयर करें।यदि आप इस वेबसाइट पर पहली बार आए हैं तो वेबसाइट को फॉलो करें और ईमेल सब्सक्रिप्शन को भी फॉलो करें।जिससे नए आर्टिकल का नोटिफिकेशन आपको मिल सके।यदि आर्टिकल पसन्द आए तो अपने मित्रों के साथ शेयर और लाईक करें जिससे वे भी लाभ उठाए।आपकी कोई समस्या हो या कोई सुझाव देना चाहते हैं तो कमेंट करके बताएं।इस आर्टिकल को पूरा पढ़ें।

Also Read This Article:- Application of Quadratic Equation 10th

2.त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं के उदाहरण (Trigonometric Identities Class 10th Examples):

निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए,जहाँ वे कोण,जिनके लिए व्यंजक परिभाषित है,न्यून कोण है:
Example:1. 1+sinθcosθ+cosθ1+sinθ=2secθ\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}=2 \sec \theta
Solution: 1+sinθcosθ+cosθ1+sinθ=2secθL.H.S. 1+sinθcosθ+cosθ1+sinθ=(1+sinθ)2+cos2θcosθ(1+sinθ)=1+2sinθ+sin2θ+cos2θcosθ(1+sinθ)=1+2sinθ+1cosθ(1+sinθ)[sin2θ+cos2θ=1]=2(1+sinθ)cosθ(1+sinθ)=2cosθ=2secθ= R.H.S.  \frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}=2 \sec \theta \\ \text{L.H.S. } \frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta} \\ =\frac{(1+\sin \theta)^2+\cos ^2 \theta}{\cos \theta(1+\sin \theta)} \\ =\frac{1+2 \sin \theta+\sin ^2 \theta+\cos ^2 \theta}{\cos \theta(1+ \sin \theta)} \\ =\frac{1+2 \sin \theta+1}{\cos \theta(1+\sin \theta)}\left[\because \sin ^2 \theta+\cos ^2 \theta=1\right] \\ =\frac{2(1+\sin \theta)}{\cos \theta(1+\sin \theta)} \\ =\frac{2}{\cos \theta}=2 \sec \theta=\text { R.H.S. }
Example:2. sin4θcos4θsin2θcos2θ=1\frac{\sin ^4 \theta-\cos ^4 \theta}{\sin ^2 \theta-\cos ^2 \theta}=1
Solution: sin4θcos4θsin2θcos2θ=1 L.H.S. sin4θcos4θsin2θcos2θ=(sin2θcos2θ)(sin2θ+cos2θ)sin2θcos2θ=sin2θ+cos2θ=1= R.H.S.  \frac{\sin ^4 \theta-\cos ^4 \theta}{\sin ^2 \theta-\cos ^2 \theta}=1 \\ \text { L.H.S. } \frac{\sin ^4 \theta-\cos ^4 \theta}{\sin ^2 \theta-\cos ^2 \theta} \\ =\frac{\left(\sin ^2 \theta-\cos ^2 \theta\right)\left(\sin ^2 \theta+\cos ^2 \theta\right)}{\sin ^2 \theta-\cos ^2 \theta} \\ =\sin ^2 \theta+\cos ^2 \theta=1=\text { R.H.S. } 
Example:3. 11sinθ+11+sinθ=2sec2θ\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}=2 \sec^2 \theta
Solution: 11sinθ+11+sinθ=2sec2θ L:H.S 11sinθ+11+sinθθ=1+sinθ+1sinθ(1sinθ)(1+sinθ)=21sin2θ=2cos2θ[sin2θ+cos2θ=1]=2sec2θ= R.H.S \frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}=2 \sec ^2 \theta \\ \text { L:H.S } \frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta} \\ \theta =\frac{1+\sin \theta+1-\sin \theta}{(1-\sin \theta)(1+\sin \theta)} \\ =\frac{2}{1-\sin ^2 \theta} \\ =\frac{2}{\cos ^2 \theta} \quad\left[\because \sin ^2 \theta+\cos ^2 \theta=1\right] \\ =2 \sec ^2 \theta=\text { R.H.S }
Example:4.(secθcosθ)(cotθ+tanθ)=tanθsecθ (\sec \theta-\cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta
Solution:(secθcosθ)(cotθ+tanθ)=tanθsecθ L.H.S (secθcosθ)(cotθ+tanθ)=(1cosθcosθ)(cosθsinθ+sinθcosθ)[secθ=1cosθ तथा  tanθ=sinθcosθ]=(1cos2θcosθ)(cos2θ+sinθcosθ)=sin2θcos2θ×1sinθcosθ=sinθcos2θ=tanθsecθ= R.H.S  (\sec \theta-\cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta \\ \text { L.H.S }(\sec \theta-\cos \theta)(\cot \theta+\tan \theta) \\ =\left(\frac{1}{\cos \theta}-\cos \theta\right)\left(\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}\right)\left[ \sec \theta=\frac{1}{\cos \theta} \text{ तथा  } \tan \theta =\frac{\sin \theta}{\cos \theta} \right]\\ =\left(\frac{1-\cos ^2 \theta}{\cos \theta}\right) \left(\frac{\cos ^2 \theta+\sin \theta}{\cos \theta}\right) \\ =\frac{\sin ^2 \theta}{\cos ^2 \theta} \times \frac{1}{\sin \theta \cos \theta} \\ =\frac{\sin \theta}{\cos ^2 \theta}=\tan \theta \sec \theta =\text { R.H.S }
Example:5. cotθtanθ=12sin2θcosθsinθ\cot \theta-\tan \theta=\frac{1-2 \sin ^2 \theta}{\cos \theta \sin \theta}
Solution: cotθtanθ=12sin2θcosθsinθR.H.S. 12sin2θcosθsinθ=1sin2θsin2θcosθsinθ=cos2θsin2θcos2θsinθ=cos2θcosθsinθsin2θcosθsinθ=cosθsinθsinθcosθ=cotθtanθ=L.H.S.\cot \theta-\tan \theta=\frac{1-2 \sin ^2 \theta}{\cos \theta \sin \theta} \\ \text{R.H.S. } \frac{1-2 \sin ^2 \theta}{\cos \theta \sin \theta} \\ =\frac{1-\sin ^2 \theta-\sin ^2 \theta}{\cos \theta \sin \theta} \\ =\frac{\cos ^2 \theta-\sin ^2 \theta}{\cos ^2 \theta \cdot \sin \theta} \\ =\frac{\cos ^2 \theta}{\cos \theta \sin \theta}-\frac{\sin ^2 \theta}{\cos \theta \sin \theta} \\ =\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta} \\=\cot \theta-\tan \theta=\text{L.H.S.}
Example:6. cosec6θcot6θ=1+3cosec2θcot2θ\operatorname{cosec}^6 \theta-\cot ^6 \theta=1+3 \operatorname{cosec}^2 \theta \cot ^2 \theta
Solution: cosec6θcos6θ=1+3cosec2θcotθ L.H.S. cosec6θcot6θ=(cosec2θ)3(cot2θ)3=(cosec2θcot2θ)[cosec4θ+cot4θ+cosec2θcot2θ]=(1)[cosec4θ+cot4θ2cosec2θcot2θ+3cosec2θcot2θ][cosec2θcot2θ=1]=[(cosec2θcot2θ)2+3cosec2θcot2θ]=[12+3cosec2θcot2θ]=1+3cosec2θcot2θ= R.H.S. \operatorname{cosec}^6 \theta-\cos ^6 \theta=1+3 \operatorname{cosec}^2 \theta \cot \theta \\ \text { L.H.S. } \operatorname{cosec}^6 \theta-\cot ^6 \theta \\ =\left(\operatorname{cosec}^2 \theta\right)^3 -\left(\cot ^2 \theta\right)^3 \\ =\left(\operatorname{cosec}^2 \theta-\cot ^2 \theta\right) \left[\operatorname{cosec}^4 \theta+\cot ^4 \theta+ \operatorname{cosec}^2 \theta \cot ^2 \theta\right] \\ =(1)\left[\operatorname{cosec}^4 \theta+\cot ^4 \theta-2 \operatorname{cosec}^2 \theta \cot ^2 \theta+3 \operatorname{cosec}^2 \theta \cot ^2 \theta\right] \\ \left[\because cosec^2 \theta-\cot^2 \theta=1\right] \\ =\left[\left(\operatorname{cosec}^2 \theta-\cot^2 \theta\right)^2+3 \operatorname{cosec}^2 \theta \cot^2 \theta\right] \\=\left[1^2+3 \operatorname{cosec}^2 \theta \cot ^2 \theta\right] \\ =1+3 \operatorname{cosec}^2 \theta \cot ^2 \theta=\text { R.H.S. }
विकल्पतः  R.H.S. 1+3cosec2θcot2θ=(cosec2θcot2θ)2+3cosec2θcot2θ=cosec4θ+cot4θ2cosec2θcot2θ+3cosec2θcot2θ=(1)(cosec4θ+cot4θ+cosec2θcot2θ)=(cosec2θcot2θ)[(cosec2θ)2+(cot2θ)2+cosec2θcot2θ]=(cosec2θ)3(cot2θ)3=cosec6θcot6θ= L.H.S. \text { R.H.S. } 1+3\operatorname{cosec}^2 \theta \cot ^2 \theta \\ =\left(\operatorname{cosec}^2 \theta-\cot ^2 \theta\right)^2+3 \operatorname{cosec}^2 \theta \cot ^2 \theta \\ =\operatorname{cosec}^4 \theta+\cot ^4 \theta-2 \operatorname{cosec}^2 \theta \cot ^2 \theta +3 \operatorname{cosec}^2 \theta \cot ^2 \theta \\ =(1)\left(\operatorname{cosec}^4 \theta+\cot ^4 \theta+\operatorname{cosec}^2 \theta \cot ^2 \theta\right) \\ =\left(\operatorname{cosec}^2 \theta-\cot ^2 \theta\right)\left[\left(\operatorname{cosec}^2 \theta\right)^2+\left(\cot ^2 \theta\right)^2+\operatorname{cosec}^2 \theta \cot ^2 \theta\right] \\ =\left(\operatorname{cosec}^2 \theta\right)^3-\left(\cot ^2 \theta\right)^3 \\ =\operatorname{cosec}^6 \theta-\cot ^6 \theta=\text { L.H.S. }
Example:7. sinθ(1+tanθ)+cosθ(1+cotθ)=cosecθ+secθ\sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta) =\operatorname{cosec} \theta+\sec \theta
Solution: sinθ(1+tanθ)+cosθ(1+cotθ)=cosecθ+1secθ L.H.S. sinθ(1+tanθ)+cosθ(1+cotθ)=sinθ(1+sinθcosθ)+cosθ(1+cosθsinθ)[cotθ=cosθsinθ]=sinθ(cosθ+sinθcosθ)+cosθ(sinθ+cosθsinθ)=(cosθ+sinθ)(sinθcosθ+cosθsinθ)=(cosθ+sinθ)(sin2θ+cos2θcos2θsinθ)=(cosθ+sinθ)×1cosθsinθ=cosθcosθsinθ+sinθcosθsinθ=1sinθ+1cosθ=cosecθ+secθ= R.H.S. \sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta)=\frac{\operatorname{cosec} \theta+1}{\sec \theta} \\ \text { L.H.S. } \sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta) \\ =\sin \theta \left(1+\frac{\sin \theta}{\cos \theta}\right)+\cos \theta\left(1+\frac{\cos \theta}{\sin \theta}\right)\left[ \cot \theta=\frac{\cos \theta}{\sin \theta} \right] \\ =\sin \theta\left(\frac{\cos \theta+\sin \theta}{\cos \theta}\right)+\cos \theta\left(\frac{\sin \theta+\cos \theta}{\sin \theta}\right) \\ =(\cos \theta+\sin \theta)\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right) \\ =(\cos \theta+\sin \theta)\left(\frac{\sin ^2 \theta+\cos ^2 \theta}{\cos ^2 \theta \sin \theta}\right) \\ =(\cos \theta+\sin \theta) \times \frac{1}{\cos \theta \sin \theta} \\ =\frac{\cos \theta}{\cos \theta \sin \theta}+ \frac{\sin \theta}{\cos \theta \sin \theta} \\ =\frac{1}{\sin \theta} +\frac{1}{\cos \theta}=\operatorname{cosec} \theta+\sec \theta=\text { R.H.S. }
विकल्पतः  L.H.S. =cosθ+sinθcosθsinθ=cosecθ+secθ=1sinθ+1cosθ=cosθ+sinθsinθcosθ L.H.S=R.H.S  \text { L.H.S. }=\frac{\cos \theta+\sin \theta}{\cos \theta \sin \theta} \\ =\operatorname{cosec} \theta+\sec \theta \\ =\frac{1}{\sin \theta}+\frac{1}{\cos \theta} \\ =\frac{\cos \theta+\sin \theta}{\sin \theta \cos \theta} \\ \text { L.H.S}= \text{R.H.S } 
Example:8. sin3θ+cos3θ(sinθ+cosθ)=1cosθsinθ\frac{\sin ^3 \theta+\cos ^3 \theta}{(\sin \theta+\cos \theta)}=1-\cos \theta \sin \theta
Solution: sin3θ+cos3θ(sinθ+cosθ)=1cosθsinθL.H.S. =sin3θ+cos3θ(sinθ+cosθ)=(sinθ+cosθ)(sin2θ+cos2θcosθsinθ)(sinθ+cosθ)[a3+b3=(a+b)(a2+b2ab)]=sin2θ+cos2θsinθcosθ=1sinθcosθ= R.H.S. \frac{\sin ^3 \theta+\cos ^3 \theta}{(\sin \theta+\cos \theta)}=1-\cos \theta \sin \theta \\ \text{L.H.S. }=\frac{\sin ^3 \theta+\cos ^3 \theta}{(\sin \theta+\cos \theta)} \\ =\frac{(\sin \theta+\cos \theta)\left(\sin ^2 \theta+\cos ^2 \theta-\cos \theta \sin \theta\right)}{(\sin \theta+\cos \theta)} \left[ \because a^3+b^3=(a+b)(a^2+b^2-ab) \right]\\ =\sin ^2 \theta+\cos ^2 \theta-\sin \theta \cos \theta\\ =1-\sin \theta \cos \theta=\text { R.H.S. }
विकल्पतः 1cosθsinθsin2θ+cos2θcosθsinθ=(sinθ+cosθ)(sin2θ+cos2θcosθsinθ)(sinθ+cosθ)=sin3+cos3θ(sinθ+cosθ)= L.H.S. 1-\cos \theta \sin \theta\\ \sin ^2 \theta+\cos ^2 \theta-\cos \theta \sin \theta \\ =\frac{(\sin \theta+\cos \theta)\left(\sin ^2 \theta+\cos ^2 \theta-\cos \theta \sin \theta\right)}{(\sin \theta+\cos \theta)} \\ =\frac{\sin ^3+\cos ^3 \theta}{(\sin \theta+\cos \theta)}=\text { L.H.S. }
Example:9. cotθ1+tanθ=cotθ12sec2θ\frac{\cot \theta}{1+\tan \theta}=\frac{\cot \theta-1}{2-\sec ^2 \theta}
Solution: cotθ1+tanθ=cotθ12sec2θMethod 1 L.H.S. cotθ1+tanθ\frac{\cot \theta}{1+\tan \theta}=\frac{\cot \theta-1}{2-\sec ^2 \theta} \\ \text{Method 1} \\ \text { L.H.S. } \frac{\cot \theta}{1+\tan \theta}
अंश व हर को  1tanθ1-\tan \theta से गुणा करने पर:
cotθ(1tanθ)(1+tanθ)(1tanθ)=cotθcotθtanθ1tan2θ=cotθ11(sec2θ1)\frac{\cot \theta (1-\tan \theta)}{(1+\tan \theta)(1-\tan \theta)} \\ =\frac{\cot \theta-\cot \theta \tan \theta}{1-\tan ^2 \theta} \\ =\frac{\cot \theta-1}{1-(\sec ^2 \theta-1)}
[ cotθtanθ=1\because \cot \theta \tan \theta=1 तथा 1+tan2θ=sec2θ1+ \tan^2 \theta= \sec^2 \theta ]
=cotθ11sec2θ+1=cotθ12sec2θ= R.H.S.  Method 2 R.H.S. =cotθ12sec2θ=cotθcotθtanθ1+1sec2θ=cotθ(1tanθ)1(sec2θ1)[1=cotθtanθ]=cotθ(1tanθ)1tan2θ[sec2θ1=tan2θ]=cotθ(1tanθ)(1+tanθ)(1tanθ)=cotθ1+tanθ= L.H.S.  Method : 3 cotθ1+tanθ=cosθsinθ1+sinθcosθ=cos2θsinθ(sinθ+cosθ)(1)R.H.S. cotθ12cos2θ=cosθsinθ121cos2θ=(cosθsinθ)cos2θsinθ(2cos2θ1)=(cosθsinθ)cos2θsinθ(cos2θ+cos2θ1)=(cosθsinθ)cos2θsinθ[cos2θ(1cos2θ)]=(cosθsinθ)cos2θsinθ(cos2θsin2θ)=(cosθsinθ)cos2θsinθ(cosθsinθ)(cosθ+sinθ)=cos2θsinθ(cosθ+sinθ)(2)\frac{\cot \theta-1}{1-\sec ^2 \theta+1}\\ =\frac{\cot \theta-1}{2-\sec ^2 \theta}=\text { R.H.S. } \\ \text { Method 2} \\ \text { R.H.S. } =\frac{\cot \theta-1}{2-\sec ^2 \theta} \\ =\frac{\cot \theta-\cot \theta \tan \theta }{1+1-\sec ^2 \theta} \\ =\frac{\cot \theta\left(1-\tan \theta\right)}{1-\left(\sec ^2 \theta-1\right)} \left[ \because 1=\cot \theta \tan \theta \right] \\ =\frac{\cot \theta(1-\tan \theta)}{1-\tan^2 \theta} \left[\because \sec ^2 \theta-1=\tan ^2 \theta \right] \\ =\frac{\cot \theta(1-\tan \theta)}{(1+\tan \theta)(1-\tan \theta)} \\ =\frac{\cot \theta}{1+\tan \theta}=\text { L.H.S. } \\ \text { Method : 3 } \frac{ \cot \theta}{1+\tan \theta} \\ =\frac{\frac{\cos \theta}{\sin \theta}}{1+\frac{\sin \theta}{\cos \theta}} \\ =\frac{\cos ^2 \theta}{\sin \theta( \sin \theta+\cos \theta)} \cdots(1) \\ \text{R.H.S. } \frac{\cot \theta-1}{2-\cos^2 \theta} \\ =\frac{\frac{\cos \theta}{\sin \theta}-1}{2-\frac{1}{\cos ^2 \theta}} \\ =\frac{(\cos \theta-\sin \theta) \cos ^2 \theta}{\sin \theta\left(2 \cos ^2 \theta-1\right)} \\ =\frac{(\cos \theta-\sin \theta) \cos ^2 \theta}{\sin \theta\left(\cos ^2 \theta+\cos ^2 \theta-1\right)} \\ =\frac{(\cos \theta-\sin \theta) \cos ^2 \theta}{\sin \theta\left[\cos ^2 \theta-\left(1-\cos ^2 \theta\right)\right]} \\ =\frac{(\cos \theta-\sin \theta) \cos ^2 \theta}{\sin \theta\left(\cos ^2 \theta-\sin ^2 \theta\right)} \\ =\frac{(\cos \theta-\sin \theta) \cos ^2 \theta}{\sin \theta(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)} \\ =\frac{\cos ^2 \theta}{\sin \theta(\cos \theta+\sin \theta)} \cdots(2)
(1) व (2) सेः
L.H.S.=R.H.S.
Example:10.  1+cosθ1cosθ=1+cosθsinθ=cosecθ+cotθ\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{1+\cos \theta}{\sin \theta}=\operatorname{cosec} \theta+\cot \theta
Solution:  1+cosθ1cosθ=1+cosθsinθ=cosecθ+cotθ L.H.S. 1+cosθ1cosθ=1+cosθ1cosθ×1+cosθ1+cosθ=(1+cosθ)21cos2θ=1+cosθsin2θ=1+cosθsinθ=M.H.S.=1sinθ+cosθsinθ=cosecθ+cotθ=R.H.S\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{1+\cos \theta}{\sin \theta}= \operatorname{cosec} \theta+\cot \theta \\ \text { L.H.S. } \sqrt{\frac{1+\cos \theta}{1-\cos \theta}} =\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}} \\ =\sqrt{\frac{(1 +\cos \theta)^2}{1-\cos ^2 \theta}} \\ =\frac{1+\cos \theta}{\sqrt{\sin ^2 \theta}} \\ =\frac{1+\cos \theta}{\sin \theta}=\text{M.H.S.} \\ =\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta} \\ =\operatorname{cosec} \theta+\cot \theta=\text{R.H.S}

Example:11. (1+cot2θ)(1cosθ)(1+cosθ)=1\left(1+\cot ^2 \theta\right)(1-\cos \theta)(1+\cos \theta)=1
Solution: (1+cot2θ)(1cosθ)(1+cosθ)=1 L.H.S. (1+cot2θ)(1cosθ)(1+cosθ)=(cosec2θ)(1cos2θ)[1+cot2θ=cosec2θ]=cosec2θsin2θ=1= R.H.S. [cosecθsinθ=1]\left(1+\cot ^2 \theta\right)(1-\cos \theta)(1+\cos \theta)=1 \\ \text { L.H.S. }\left(1+\cot ^2 \theta\right)(1-\cos \theta)(1+\cos \theta) \\ =\left(\operatorname{cosec}^2 \theta\right)\left(1-\cos ^2 \theta\right)\left[\because 1+\cot ^2 \theta=\operatorname{cosec}^2 \theta\right] \\=\operatorname{cosec}^2 \theta \sin ^2 \theta \\ =1=\text { R.H.S. }[ \because \operatorname{cosec} \theta \sin \theta=1]
विकल्पतः
 R.H.S. =1=12=(cosecθsinθ)2[cosecθsinθ=1]=cosec2θsin2θ=(1+cot2θ)(1cos2θ)=(1+cot2θ)(1cosθ)(1+cosθ)=L.H.S.\text { R.H.S. } =1 \\ =1^2 \\ \\=(\operatorname{cosec} \theta \sin \theta)^2[\because \operatorname{cosec} \theta \sin \theta=1] \\ =\operatorname{cosec}^2 \theta \sin ^2 \theta \\ =\left(1+\cot ^2 \theta\right)\left(1-\cos ^2 \theta\right) \\ =\left(1+\cot ^2 \theta\right)(1-\cos \theta)(1+\cos \theta)=\text{L.H.S.}
Example:12. 1secθtanθ1cosθ=1cosθ1secθ+tanθ\frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}=\frac{1}{\cos \theta}-\frac{1}{\sec \theta+\tan \theta}
Solution: 1secθtanθ1cosθ=1cosθ1secθ+tanθ L.H.S.1secθtanθ1cosθ=(secθ+tanθ)(secθtanθ)(secθ+tanθ)1cosθ=secθ+tanθsec2θtan2θ1cosθ=secθ+tanθsecθ[sec2θtan2θ=1]=1cosθ(secθtanθ)=1cosθ(secθtanθ)(secθ+tanθ)(secθ+tanθ)=1cosθsec2θtan2θsecθ+tanθ=1cosθ=1secθ+tanθ= R.H.S. \frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}=\frac{1}{\cos \theta}-\frac{1}{\sec \theta+\tan \theta} \\ \text { L.H.S.} \frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta} \\=\frac{(\sec \theta+\tan \theta)}{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}-\frac{1}{\cos \theta} \\ =\frac{\sec \theta+\tan \theta}{\sec ^2 \theta-\tan ^2 \theta}-\frac{1}{\cos \theta} \\ =\sec \theta+\tan \theta-\sec \theta\left[\because \sec ^2 \theta-\tan ^2 \theta=1\right] \\ =\frac{1}{\cos \theta}-(\sec \theta-\tan \theta) \\ =\frac{1}{\cos \theta}-\frac{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{(\sec \theta+\tan \theta)} \\ =\frac{1}{\cos \theta}-\frac{\sec ^2 \theta-\tan ^2 \theta}{\sec \theta+\tan \theta} \\ =\frac{1}{\cos \theta}=\frac{1}{\sec \theta+\tan \theta}=\text { R.H.S. }
Example:13.secθtanθsecθ+tanθ=12secθtanθ \frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=1-2 \sec \theta \tan \theta
Solution: secθtanθsecθ+tanθ=12secθtanθ+2tan2θ L.H.S. secθtanθsecθ+tanθ\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=1-2 \sec \theta \tan \theta+2 \tan^2 \theta \\ \text { L.H.S. } \frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}
अंश व हर को secθtanθ\sec \theta \tan \theta से गुणा करने परः
= (secθtanθ)(secθsenθ)(secθ+tanθ)(secθtanθ)=sec2θ+tan2θ2secθtanθsec2θtan2θ=1+tan2θ+tan2θ2secθtanθ [sec2θ=1+tan2θ तथा sec2θtan2θ=1]=12secθtanθ+2tan2θ= R.H.S. \frac{(\sec \theta-\tan \theta)(\sec \theta-\operatorname{sen} \theta)}{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)} \\ =\frac{\sec ^2 \theta+\tan ^2 \theta-2 \sec \theta \tan \theta}{\sec ^2 \theta-\tan ^2 \theta} \\=1+\tan ^2 \theta+\tan ^2 \theta-2 \sec \theta \tan \theta  \\ \left[ \because \sec ^2 \theta =1+\tan ^2 \theta \text{ तथा } \sec ^2 \theta-\tan ^2 \theta=1 \right] \\ =1- 2\sec \theta \cdot \tan \theta+2 \tan ^2 \theta=\text { R.H.S. }
Example:14.sin2θcosθ+tanθsinθ+cos3θ=secθ \sin ^2 \theta \cos \theta+\tan \theta \sin \theta+\cos ^3 \theta=\sec \theta
Solution:sin2θcosθ+tanθsinθ+cos3θ=secθ L.H.S. sin2θcosθ+tanθsinθ+cos3θ=sin2θcosθ+cos3θ+tanθsinθ=cosθ(sin2θ+cos2θ)+tanθsinθ=cosθ+sinθcosθsinθ[tanθ=sinθcosθ]=cosθ+sin2θcosθ=cos2θ+sin2θcosθ=1cosθ=secθ= R.H.S. \sin ^2 \theta \cos \theta+\tan \theta \sin \theta+\cos ^3 \theta=\sec \theta \\ \text { L.H.S. } \sin ^2 \theta \cos \theta+\tan \theta \sin \theta+\cos ^3 \theta \\ = \sin ^2 \theta \cos \theta+\cos ^3 \theta+\tan \theta \sin \theta \\ =\cos \theta\left(\sin ^2 \theta+\cos ^2 \theta\right)+\tan \theta \sin \theta \\ =\cos \theta +\frac{\sin \theta}{\cos \theta} \cdot \sin \theta \left[ \because \tan \theta=\frac{\sin \theta}{\cos \theta}\right] \\ =\cos \theta+\frac{\sin ^2 \theta}{\cos \theta} \\ =\frac{\cos ^2 \theta+\sin ^2 \theta}{\cos \theta}=\frac{1}{\cos \theta}=\sec \theta=\text{ R.H.S.}
Example:15. (1+cotθcosecθ)(1+tanθ+secθ)=2(1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta)=2
Solution:(1+cotθcosecθ)(1+tanθ+secθ)=2L.H.S. (1+cotθcosecθ)(1+tanθ+secθ)=(1+cosθsinθ1sinθ)(1+sinθcosθ+1cosθ)[cotθ=cosθsinθ,cosecθ=1sinθ]=(sinθ+cosθ1sinθ)(cosθ+sinθ+1cosθ)=(sinθ+cosθ)21sinθcosθ[(a+b)(ab)=a2b2]=sin2θ+cos2θ+2sinθcosθ1sinθcosθ=1+2sinθcosθ1sinθcosθ=2sinθcosθsinθcosθ=2= R.H.S.  (1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta)=2 \\ \text{L.H.S. } (1+\cot \theta -\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta) \\ =\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)\left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right)\left[ \cot \theta=\frac{\cos \theta}{\sin \theta} ,\operatorname{cosec} \theta=\frac{1}{\sin \theta}\right] \\ =\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right)\left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right) \\ =\frac{(\sin \theta+\cos \theta)^2-1}{\sin \theta \cos \theta} \quad\left[ \because (a+b)(a-b)=a^2-b^2\right] \\ =\frac{\sin ^2 \theta+\cos ^2 \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\ =\frac{1+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\ =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2=\text { R.H.S. }
Example:16. cotθcosθcotθ+cosθ=cotθcosθcotθcosθ\frac{\cot \theta \cos \theta}{\cot \theta+\cos \theta}=\frac{\cot \theta-\cos \theta}{\cot \theta \cos \theta}
Solution:cotθcosθcotθ+cosθ=cotθcosθcotθcosθL.H.S.cotθcosθcostθ+cosθ\frac{\cot \theta \cos \theta}{\cot \theta+\cos \theta}=\frac{\cot \theta-\cos \theta}{\cot \theta \cos \theta} \\ \text{L.H.S.} \frac{\cot \theta \cos \theta}{\cos t \theta+\cos \theta}
अंश व हर को cotθcosθ\cot \theta-\cos \theta से गुणा करने परः
(cotθcosθ)(cotθcosθ)(cotθ+cosθ)(cotθcosθ)=(cotθcosθ)(cotθcosθ)cot2θcos2θ=(cotθcosθ)(cotθcosθ)cosec2θ1cos2θ=(cotθcosθ)(cotθcosθ)cosec2θ1cos2θ[cot2θ=cosec2θ1]=(cotθcosθ)(cotθcosθ)1sin2θ1cos2θ[cosec2θ=1sin2θ]=(cotθcosθ)(cotθcosθ)1sin2θcos2θsin2θsin2θ=(cotθcosθ)(cotθcosθ)cosec2θ(cos2θcos2θsin2θ)=(cotθcosθ)(cotθcosθ)cosec2θcos2θ(1sin2θ)=(cotθcosθ)(cotθcosθ)cosec2θcos2θcos2θ=(cotθcosθ)(cotθcosθ)cot2θcos2θ[cosec2θcos2θ=cot2θ]=cotθcosθcotθcosθ= R.H.S \frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{(\cot \theta+\cos \theta)(\cot \theta-\cos \theta)} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\cot ^2 \theta-\cos ^2 \theta} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\operatorname{cosec}^2 \theta-1-\cos ^2 \theta} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\operatorname{cosec}^2 \theta-1-\cos ^2 \theta} \left[ \because \cot^2 \theta=\operatorname{cosec}^2 \theta-1 \right]\\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\frac{1}{\sin ^2 \theta}-1-\cos ^2 \theta } \left[ \because \operatorname{cosec}^2 \theta=\frac{1}{\sin ^2 \theta} \right] \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\frac{1-\sin ^2 \theta-\cos ^2 \theta \sin ^2 \theta}{\sin^2 \theta}}\\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\operatorname{cosec}^2 \theta\left(\cos ^2 \theta-\cos ^2 \theta \sin ^2 \theta\right)} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{ \operatorname{cosec}^2 \theta \cdot \cos ^2 \theta\left(1-\sin ^2 \theta\right)} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\operatorname{cosec}^2 \theta \cos ^2 \theta \cos ^2 \theta} \\ =\frac{(\cot \theta \cos \theta)(\cot \theta-\cos \theta)}{\cot ^2 \theta \cos ^2 \theta}\left[ \because \operatorname{cosec}^2 \theta \cos ^2 \theta =\cot ^2 \theta \right] \\=\frac{\cot \theta-\cos \theta}{\cot \theta \cos \theta}=\text { R.H.S }
Example:17. tan3θ1tan2θ1=sec2θ+tanθ\frac{\tan ^3 \theta-1}{\tan ^2 \theta-1}=\sec ^2 \theta+\tan \theta
Solution: tan3θ1tanθ1=sec2θ+tanθ L.H.S. tan3θ1tanθ1=(tanθ1)(tan2θ+1+tanθ)(tanθ1)=1+tan2θ+tanθ=sec2θ+tanθ= R.H.S. \frac{\tan ^3 \theta-1}{\tan \theta-1}=\sec ^2 \theta+\tan \theta \\ \text { L.H.S. } \frac{\tan ^3 \theta-1}{\tan \theta-1} \\ =\frac{(\tan \theta-1)\left(\tan ^2 \theta+1+\tan \theta\right)}{(\tan \theta-1)} \\ =1+\tan ^2 \theta+\tan \theta \\ =\sec ^2 \theta+\tan \theta=\text { R.H.S. }
Example:18. sec6θtan6θ=1+3tan2θ+3tan4θ \sec ^6 \theta-\tan ^6 \theta=1+3 \tan ^2 \theta+3 \tan 4 \theta 
Solution: sec6θtan6θ=1+3tan2θ+3tan2θ L.H.S. sec6θtan6θ=(sec2θ)3(tan2θ)3=(sec2θtan2θ)[sec4θ+tan4θ+sec2θtan2θ]=(1)[sec4θ+tan4θ2sec2θtan2θ+3sec2θtan2θ]=[(sec2θtan2θ)2+3sec2θtan2θ]=[12+3sec2θtan2θ][sec2θtan2θ=1]=1+3sec2θtan2θ=R.H.S.\sec ^6 \theta-\tan ^6 \theta=1+3 \tan ^2 \theta+3 \tan ^2 \theta \\ \text { L.H.S. } \sec ^6 \theta-\tan ^6 \theta \\ =\left(\sec ^2 \theta\right)^3-\left(\tan ^2 \theta\right)^3 \\ =\left(\sec ^2 \theta-\tan ^2 \theta\right)\left[\sec ^4 \theta+\tan ^4 \theta+\sec ^2 \theta \tan ^2 \theta\right] \\ =(1)\left[\sec ^4 \theta+\tan ^4 \theta-2 \sec ^2 \theta \tan ^2 \theta+3 \sec ^2 \theta \tan ^2 \theta\right] \\ =\left[\left(\sec ^2 \theta-\tan ^2 \theta\right)^2+3 \sec ^2 \theta \tan ^2 \theta\right] \\ =\left[1^2+3 \sec ^2 \theta \tan ^2 \theta\right]\left[\because \sec ^2 \theta-\tan ^2 \theta=1\right] \\ =1+3 \sec ^2 \theta \tan ^2 \theta=\text{R.H.S.}
Example:19. tan2Atan2B=cos2Bcos2Acos2Acos2B=sin2Asin2Bcos2Acos2B\tan ^2 A-\tan ^2 B=\frac{\cos ^2 B-\cos ^2 A}{\cos ^2 A \cos ^2 B}=\frac{\sin ^2 A-\sin ^2 B}{\cos ^2 A \cos ^2 B}
Solution: tan2Atan2B=cos2Bcos2Acos2Acos2B=sin2Asin2Bcos2Acos2B L.H.S.tan2Atan2B=sin2Acos2Asin2Bcos2B=sin2A(cos2B)cos2Asin2Bcos2Acos2B=(1cos2A)cos2Bcos2A(1cos2B)cos2Acos2B=cos2Bcos2Acos2Bcos2A+cos2Acos2Bcos2Acos2B=cos2Bcos2Acos2Acos2B=M.H.S.=1sin2B(1sin2A)cos2Acos2B=1sin2B1+sin2Acos2Acos2B=sin2Asin2Bcos2Acos2B= R.H.S. \tan ^2 A-\tan ^2 B=\frac{\cos ^2 B-\cos ^2 A}{\cos ^2 A \cos ^2 B}=\frac{\sin ^2 A-\sin ^2 B}{\cos ^2 A \cos ^2 B}\\ \text { L.H.S.} \tan ^2 A -\tan ^2 B \\ =\frac{\sin ^2 A}{\cos ^2 A}-\frac{\sin ^2 B}{\cos ^2 B} \\ =\frac{\sin ^2 A\left(\cos ^2 B\right)-\cos ^2 A \sin ^2 B}{\cos ^2 A \cos ^2 B} \\ =\frac{\left(1-\cos ^2 A\right) \cos ^2 B-\cos ^2 A\left(1-\cos ^2 B\right)}{\cos ^2 A \cos ^2 B} \\ =\frac{\cos ^2 B-\cos ^2 A \cos ^2 B-\cos ^2 A+\cos ^2 A \cos ^2 B}{\cos ^2 A \cos ^2 B} \\ =\frac{\cos ^2 B-\cos ^2 A}{\cos ^2 A \cos ^2 B}=\text{M.H.S.} \\=\frac{1-\sin ^2 B-\left(1-\sin ^2 A\right)}{\cos ^2 A \cos ^2 B} \\ =\frac{1-\sin ^2 B-1+\sin ^2 A}{\cos ^2 A \cos ^2 B} \\ =\frac{\sin ^2 A-\sin ^2 B}{\cos ^2 A \cdot \cos ^2 B}=\text { R.H.S. }
Example:20.tan2θtan2θ1+cosec2θsec2θcosec2θ=1sin2θcos2θ \frac{\tan ^2 \theta}{\tan ^2 \theta-1}+\frac{\operatorname{cosec}^2 \theta}{\sec ^2 \theta-\operatorname{cosec}^2 \theta}=\frac{1}{\sin ^2 \theta-\cos ^2 \theta}
Solution: tan2θtan2θ1+cosec2θsec2θcosec2θ=1sin2θcos2θ L.H.S tan2θtan2θ1+cosec2θsec2θcosec2θ=sin2θcos2θsin2θcos2θ1+1sin2θ1cos2θ1sin2θ=sin2θsin2θcos2θ+cos2θsin2θcos2θ=sin2θ+cos2θsin2θcos2θ=1sin2θcos2θ= R.H.S. \frac{\tan ^2 \theta}{\tan ^2 \theta-1}+\frac{\operatorname{cosec}^2 \theta}{\sec ^2 \theta-\operatorname{cosec}^2 \theta}=\frac{1}{\sin ^2 \theta-\cos ^2 \theta} \\ \text { L.H.S } \frac{\tan ^2 \theta}{\tan ^2 \theta-1}+\frac{\operatorname{cosec}^2 \theta}{\sec ^2 \theta-cosec^2 \theta} \\ =\frac{\frac{\sin ^2 \theta}{\cos ^2 \theta}}{\frac{\sin ^2 \theta}{\cos ^2 \theta}-1}+\frac{\frac{1}{\sin ^2 \theta}}{\frac{1}{\cos ^2 \theta}-\frac{1}{\sin ^2 \theta}} \\ =\frac{\sin ^2 \theta}{\sin ^2 \theta-\cos ^2 \theta}+\frac{\cos ^2 \theta}{\sin ^2 \theta-\cos ^2 \theta} \\ =\frac{\sin ^2 \theta+\cos ^2 \theta}{\sin ^2 \theta-\cos ^2 \theta} \\ =\frac{1}{\sin ^2 \theta-\cos ^2 \theta}=\text { R.H.S. }
Example:21. cosecθcosecθ1+cosecθcosecθ+1=2sec2θ\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-1}+ \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta+1}=2 \sec ^2 \theta
Solution: cosecθcosecθ1+cosecθcosecθ+1=2sec2θL.H.S. cosecθcosecθ1+cosecθcosecθ+1=cosecθ(cosecθ+1)+cosecθ(cosecθ1)(cosecθ1)(cosecθ+1)=cosec2θ+cosecθ+cosec2θcosecθcosec2θ1=2cosec2θcot2θ=2sin2θcos2θsin2θ=2sin2θ×sin2θcos2θ=2cos2θ=2sec2θ= R.H.S. \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-1}+\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta+1}=2 \sec ^2 \theta \\ \text{L.H.S. } \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-1}+\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta+1} \\ =\frac{\operatorname{cosec} \theta(\operatorname{cosec} \theta+1)+\operatorname{cosec} \theta(\operatorname{cosec} \theta-1)}{(\operatorname{cosec} \theta-1)(\operatorname{cosec} \theta+1)} \\ =\frac{\operatorname{cosec}^2 \theta+\operatorname{cosec} \theta+\operatorname{cosec}^2 \theta-\operatorname{cosec} \theta}{\operatorname{cosec}^2 \theta-1} \\ =\frac{2 \operatorname{cosec}^2 \theta}{\cot ^2 \theta} \\ =\frac{\frac{2}{\sin ^2 \theta}}{\frac{\cos ^2 \theta}{\sin ^2 \theta}} \\ =\frac{2}{\sin ^2 \theta} \times \frac{\sin ^2 \theta}{\cos ^2 \theta} \\ =\frac{2}{\cos ^2 \theta}=2 \sec ^2 \theta=\text { R.H.S. }
Example:22. (tanA+cosecB)2(cotBsecA)2=2tanAcotB(cosecA+secB)(\tan A+\operatorname{cosec} B)^2-(\cot B-\sec A)^2 =2 \tan A \cot B(\operatorname{cosec} A+\sec B)
Solution: (tanA+cosecB)2(cotBsecA)2=2tanAcotB(cosecA+secB) L.H.S (tanA+cosecB)2(cotBsecA)2=tan2A+cosec2B(cot2B+sec2A+2tanAcosecB2cotBsecA)=tan2A+cosec2B+2tanAcosecBcot2Bsec2A+2cotBsecA=(sec2Atan2A)+(cosec2Bcot2B)+2tanAcotB(cosecBcotB+secAtanA)=1+1+2tanAcotB(secB+cosecA)=2tanAcotB(secB+cosecA)=R.H.S. (\tan A+\operatorname{cosec} B)^2-(\cot B-\sec A)^2 \\ =2 \tan A \cot B(\operatorname{cosec} A+\sec B) \\ \text { L.H.S }(\tan A+ \operatorname{cosec} B)^2-(\cot B-\sec A)^2 \\ =\tan ^2 A+ \operatorname{cosec}^2 B-\left(\cot ^2 B+\sec ^2 A +2 \tan A \operatorname{cosec} B -2 \cot B \cdot \sec A\right) \\ =\tan ^2 A+\operatorname{cosec}^2 B+2 \tan A \operatorname{cosec} B -\cot ^2 B-\sec ^2 A+2 \cot B \sec A \\ =-\left(\sec ^2 A-\tan ^2 A\right)+\left(\operatorname{cosec}^2 B-\cot ^2 B\right) +2 \tan A \cot B\left( \frac{\operatorname{cosec} B}{\cot B}+\frac{\sec A}{\tan A}\right) \\ =-1+1+2 \tan A \cot B(\sec B+\operatorname{cosec} A) \\ =2 \tan A \cot B(\sec B+\operatorname{cosec} A)=\text{R.H.S.}
Example:23. 2sec2θsec4θ2cosec2θ+cosec4θ=cot4θtan4θ2 \sec ^2 \theta-\sec ^4 \theta-2 \operatorname{cosec}^2 \theta+ \operatorname{cosec}^4 \theta=\cot ^4 \theta-\tan ^4 \theta
Solution: 2sec2θsec4θ2cosec2θ+cosec4θ=cot4θtan4θ L.H.S. 2sec2θsec4θ2cosec2θ+cosec4θ=2(sec2θcosec2θ)(sec4θcosec4θ)=2(sec2θcosec2θ)(sec2θcosec2θ)(sec2θ+cosec2θ)=(sec2θcosec2θ)(2sec2θcosec2θ)=(tan2θcot2θ)(21tan2θ1cot2θ)=(cot2θtan2θ)(cot2θ+tan2θ)=cot4θtan4θ= R.H.S. 2 \sec ^2 \theta-\sec ^4 \theta-2 \operatorname{cosec}^2 \theta+ \operatorname{cosec}^4 \theta=\cot ^4 \theta-\tan ^4 \theta \\ \text { L.H.S. } 2 \sec ^2 \theta-\sec ^4 \theta-2 \operatorname{cosec}^2 \theta+\operatorname{cosec}^4 \theta \\ =2\left(\sec ^2 \theta-\operatorname{cosec}^2 \theta\right)-\left(\sec ^4 \theta-\operatorname{cosec}^4 \theta\right) \\ =2\left(\sec ^2 \theta-\operatorname{cosec}^2 \theta\right)-\left(\sec ^2 \theta-\operatorname{cosec}^2 \theta\right) \left(\sec ^2 \theta+\operatorname{cosec}^2 \theta\right) \\ =\left(\sec ^2 \theta-\operatorname{cosec}^2 \theta\right)\left(2-\sec ^2 \theta -\operatorname{cosec}^2 \theta\right) \\ =\left(\tan ^2 \theta-\cot ^2 \theta\right)\left(2-1-\tan ^2 \theta-1-\cot ^2 \theta\right) \\ =\left(\cot ^2 \theta-\tan ^2 \theta\right)\left(\cot ^2 \theta+\tan ^2 \theta\right) \\ =\cot ^4 \theta-\tan ^4 \theta =\text { R.H.S. }
Example:24.यदि sinθ+cosθ=p\sin \theta+\cos \theta=p और secθ+cosecθ=q\sec \theta+\operatorname{cosec} \theta=q ,तो सिद्ध कीजिए q(p21)=2pq\left(p^2-1\right)=2 p 
Solution: q(p21)=2pL.H.S. q(p21)=(secθ+cosecθ)[(sinθ+cosθ)21]=1cosθ+sinθ)(sin2θ+cos2θ+2sinθcosθ1)=(sinθ+cosθ)sinθcosθ(1+2sinθcosθ1)=(sinθ+cosθ)sinθcosθ×2sinθcosθ=2(sinθ+cosθ)=2p=R.H.S.q\left(p^2-1\right)=2 p \\ \text{L.H.S. } q\left(p^2-1\right) \\=(\sec \theta+\operatorname{cosec} \theta)\left[(\sin \theta+\cos \theta)^2-1\right] \\ =\frac{1}{\cos \theta+\sin \theta)} \left(\sin ^2 \theta+\cos ^2 \theta+2 \sin \theta \cos \theta-1\right) \\ =\frac{(\sin \theta+\cos \theta)}{\sin \theta \cos \theta}(1+2 \sin \theta \cos \theta-1) \\ =\frac{(\sin \theta+\cos \theta)}{\sin \theta \cos \theta} \times 2 \sin \theta \cos \theta \\ =2(\sin \theta+\cos \theta) \\ =2 p= \text{R.H.S.}
उपर्युक्त उदाहरणों के द्वारा त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities) को समझ सकते हैं।

3.त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं के सवाल (Trigonometric Identities Class 10th Questions):

निम्नलिखित सर्वसमिकाओं को सिद्ध कीजिए:

(1.) tanθ+cotθ=cosecθsecθ\tan \theta+\cot \theta=\operatorname{cosec} \theta \sec \theta
(2.) cosec2θ+sec2θ=cosec2θsec2θ\operatorname{cosec}^2 \theta+\sec ^2 \theta=\operatorname{cosec}^2 \theta \sec ^2 \theta
(3.) (1+tan2θ)(1+sinθ)(1sinθ)=1\left(1+\tan ^2 \theta\right)(1+\sin \theta)(1-\sin \theta) =1
उपर्युक्त सवालों को हल करने पर त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities) को ठीक से समझ सकते हैं।

Also Read This Article:- Imp Illustration of Quadratic Equation

4.त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Frequently Asked Questions Related to Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities) से सम्बन्धित अक्सर पूछे जाने वाले प्रश्न:

प्रश्न:1.त्रिकोणमितीय सर्वसमिकाएँ लिखिए। (Write Trigonometric Identities):

उत्तर: (1.)sin2θ+cos2θ=1,sin2θ=1cos2θ,cos2θ=1sin2θ\sin ^2 \theta+\cos ^2 \theta=1 ,\sin^2 \theta=1- \cos ^2 \theta , \cos ^2 \theta=1-\sin ^2 \theta
(2.) 1+tan2θ=sec2θ,sec2θtan2θ=1,sec2θ1=tan2θ1+\tan^2 \theta=\sec^2 \theta, \sec ^2 \theta-\tan ^2 \theta=1, \sec ^2 \theta-1=\tan^2 \theta
(3.) 1+cot2θ=cosec2θ,cosec2θcot2θ=1,cot2θ=cosec2θ11+\cot ^2 \theta=\operatorname{cosec}^2 \theta, \operatorname{cosec}^2 \theta-\cot ^2 \theta=1 ,\cot ^2 \theta=\operatorname{cosec}^2 \theta-1

प्रश्न:2.त्रिकोणमितीय अनुपात लिखिए। (Write Trigonometric Ratios):

Trigonometric Identities Class 10th

उत्तर: sinθ=लम्बकर्ण,cosθ=आधारकर्ण,tanθ=लम्बआधार,cotθ=आधारलम्ब,secθ=कर्णआधार,cosecθ=कर्णलम्ब\sin \theta=\frac{\text{लम्ब}}{\text{कर्ण}} , \cos \theta= \frac{\text{आधार}}{\text{कर्ण}}, \tan \theta=\frac{\text{लम्ब}}{\text{आधार}},\cot \theta= \frac{\text{आधार}}{\text{लम्ब}} , \sec \theta=\frac{\text{कर्ण}}{\text{आधार}} ,\operatorname{cosec} \theta= \frac{\text{कर्ण}}{\text{लम्ब}}

प्रश्न:3.त्रिकोणमितीय अनुपातों के मध्य क्या मूलभूत सम्बन्ध है? (What is the Relations Between Trigonometric Ratios?):

उत्तर: (1.) sinθ=1cosecθ,cosecθ=1sinθ,sinθcosecθ=1\sin \theta=\frac{1}{\operatorname{cosec} \theta} , \operatorname{cosec} \theta=\frac{1}{\sin \theta} , \sin \theta \operatorname{cosec} \theta=1
(2.) cosθ=1secθ,secθ=1cosθ,cosθsecθ=1\cos \theta=\frac{1}{\sec \theta}, \sec \theta=\frac{1}{\cos \theta} , \cos \theta \sec \theta=1
(3.) tanθ=1cotθ,cotθ=1tanθ,tanθcotθ=1\tan \theta=\frac{1}{\cot \theta}, \cot \theta=\frac{1}{\tan \theta}, \tan \theta \cot \theta=1
(4.)tanθ=sinθcosθ,cotθ=cosθsinθ \tan \theta=\frac{\sin \theta}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta}
उपर्युक्त प्रश्नों के उत्तर द्वारा त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th),त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities) के बारे में और अधिक जानकारी प्राप्त कर सकते हैं।

No. Social Media Url
1. Facebook click here
2. you tube click here
3. Instagram click here
4. Linkedin click here
5. Facebook Page click here
6. Twitter click here

Trigonometric Identities Class 10th

त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं
(Trigonometric Identities Class 10th)

Trigonometric Identities Class 10th

त्रिकोणमितीय सर्वसमिकाएँ कक्षा 10वीं (Trigonometric Identities Class 10th) के इस
आर्टिकल में कुछ विशिष्ट सवालों को हल करेंगे जो त्रिकोणमितीय सर्वसमिकाओं पर आधारित हैं।

Leave a Reply

Your email address will not be published. Required fields are marked *