Statistics Archive
Karl Pearson Measure of Skewness
September 8, 2022
No Comments
1.विषमता का कार्ल पियर्सन माप (Karl Pearson Measure of Skewness),विषमता का कार्ल पियर्सन गुणांक (Karl Pearson Coefficient of Skewness): विषमता का कार्ल पियर्सन माप (Karl Pearson Measure of Skewness) संमक श्रेणी के माध्यों पर निर्भर करता है।एक विषम आवृत्ति वितरण में समान्तर माध्य,मध्यका तथा बहुलक के मूल्य समान नहीं होते हैं।इन माध्यों के मध्य अन्तर
Karl Pearson Coefficient of Skewness
August 23, 2022
No Comments
1.विषमता का कार्ल पियर्सन गुणांक (Karl Pearson Coefficient of Skewness),विषमता का कार्ल पियर्सन माप (Karl Pearson Measure of Skewness): विषमता का कार्ल पियर्सन गुणांक (Karl Pearson Coefficient of Skewness) समान्तर माध्य,मध्यका,बहुलक तथा प्रमाप विचलन पर निर्भर करता है।यह माप समंक श्रेणी के माध्यों की स्थिति पर निर्भर करता है।एक विषम आवृत्ति वितरण में समान्तर माध्य,मध्यका
Coefficient of Variation in Maths
August 7, 2022
No Comments
1.गणित में विचरण-गुणांक (Coefficient of Variation in Maths),सांख्यिकी में प्रमाप विचलन (Standard Deviation in Statistics): गणित में विचरण-गुणांक (Coefficient of Variation in Maths) एक सापेक्ष माप (Relative Measure) है।जैसा कि पूर्व आर्टिकल में बताया जा चुका है कि दो या दो से अधिक श्रेणियों में अपकिरण की मात्रा की तुलना करने के लिए विचरण-गुणांक का
Standard Deviation in Statistics
July 22, 2022
No Comments
1.सांख्यिकी में प्रमाप विचलन (Standard Deviation in Statistics),सांख्यिकी में प्रमाप विचलन (Standard Deviation): सांख्यिकी में प्रमाप विचलन (Standard Deviation in Statistics) अपकिरण को मापने की सबसे अधिक लोकप्रिय और वैज्ञानिक रीति है। प्रमाप विचलन व सामूहिक प्रमाप विचलन के आर्टिकल्स इससे पूर्व भी पोस्ट कर चुके हैं अतः उन्हें भी देखना चाहिए।इस आर्टिकल में कुछ
Coefficient of Variation in hindi
July 6, 2022
No Comments
1.हिन्दी में विचरण-गुणांक (Coefficient of Variation in hindi),सांख्यिकी में विचरण गुणांक (Coefficient of Variation in Statistics): हिन्दी में विचरण-गुणांक (Coefficient of Variation in hindi) के बारे में पिछले आर्टिकल में पढ़ चुके हैं।इस आर्टिकल में कुछ ओर उदाहरणों की सहायता से इसे समझेंगे।आपको यह जानकारी रोचक व ज्ञानवर्धक लगे तो अपने मित्रों के साथ इस
Coefficient of Variation in Statistics
June 20, 2022
No Comments
1.सांख्यिकी में विचरण-गुणांक (Coefficient of Variation in Statistics),हिन्दी में विचरण गुणांक (Coefficient of Variation in hindi): सांख्यिकी में विचरण-गुणांक (Coefficient of Variation in Statistics) एक सापेक्ष माप (relative measures) है।इसका प्रतिपादन कार्ल पियर्सन (Karl Pearson) ने 1895 में किया था।अतः इसे कार्ल पियर्सन का विचरण गुणांक (Karl Pearson’s Coefficient of Variation) भी कहते हैं।कार्ल पियर्सन
Combined Standard Deviation
June 4, 2022
No Comments
1.सामूहिक प्रमाप विचलन (Combined Standard Deviation),सांख्यिकी में सामूहिक प्रमाप विचलन (Combined Standard Deviation in Statistics): सामूहिक प्रमाप विचलन (Combined Standard Deviation) उसी प्रकार विभिन्न प्रमाप विचलनों के आधार पर समस्त श्रेणियों का ज्ञात किया जाता है जिस प्रकार एक से अधिक श्रेणियों के समान्तर माध्य के आधार पर सामूहिक समान्तर माध्य निकाला जाता है।परिगणन प्रक्रिया:सामूहिक
Standard Deviation by Short-cut Method
May 19, 2022
No Comments
1.लघुरीति द्वारा प्रमाप विचलन (Standard Deviation by Short-cut Method),पद विचलित रीति से प्रमाप विचलन (Standard Deviation by Step Deviation Method): लघुरीति द्वारा प्रमाप विचलन (Standard Deviation by Short-cut Method) तब ज्ञात करना सही रहता है जब माध्य पूर्णांक में न होकर दशमलव में हो।अन्यथा माध्य पूर्णांक में होने पर प्रत्यक्ष रीति से ज्ञात करना सरल
Standard Deviation by Direct Method
May 3, 2022
No Comments
1.प्रत्यक्ष रीति से प्रमाप विचलन (Standard Deviation by Direct Method),सांख्यिकी में प्रमाप विचलन (Standard Deviation in Statistics): प्रत्यक्ष रीति से प्रमाप विचलन (Standard Deviation by Direct Method):प्रमाप विचलन के विचार का प्रतिपादन कार्ल पियर्सन (Karl Pearson) ने 1893 में किया था।यह अपकिरण को मापने की सबसे लोकप्रिय और वैज्ञानिक रीति है।प्रमाप विचलन की गणना केवल
Coefficient of Mean Deviation
April 17, 2022
No Comments
1.माध्य विचलन गुणांक (Coefficient of Mean Deviation),सांख्यिकी में माध्य विचलन (Mean Deviation in Statistics): माध्य विचलन गुणांक (Coefficient of Mean Deviation) समान्तर माध्य,मध्यका और बहुलक को आधार मानकर ज्ञात किया जाता है।परन्तु व्यवहार में मध्यका को ही आधार मानकर माध्य विचलन तथा उसके गुणक की गणना की जाती है क्योंकि यह स्थिर, निश्चित एवं प्रतिनिधि